946 resultados para STREPTOCOCCUS MUTANS
Resumo:
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Resumo:
OBJECTIVES: The purpose of the study was to determine the prevalence of different oral microbes in gingival plaque samples and in samples from the dorsum of the tongue in a Swiss adolescent population. MATERIALS AND METHODS: Ninety-nine adolescents between 15 and 18 years were enrolled. Plaque index, bleeding on probing (BOP), the periodontal screening index, and decayed missed filled tooth (DMFT) index were recorded. Samples from subgingival plaque and swabs from the tongue were analyzed by the Checkerboard DNA-DNA hybridization method. Additionally, counts of Streptococus mutans and Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were determined by real-time PCR. RESULTS: Periodontitis was not diagnosed in any of the subjects but all of them presented signs of gingival inflammation displaying a mean BOP of 28%. Ten (10.1%) subjects were tested positive for P. gingivalis, each 22 (22.2%) for A. actinomycetemcomitans and T. forsythia, (47.5%) for T. denticola. T. denticola and S. mutans showed a high affinity to the gingival plaque, whereas T. forsythia was often detected from the dorsum of the tongue. DMFT was associated with S. mutans counts, and BOP correlated with counts of P. gingivalis and T. denticola. CONCLUSIONS: The present data indicate that: (a) gingivitis but not periodontitis is a common finding among Swiss adolescents, and (b) bacteria associated with periodontitis were frequently detected in the subgingival dental plaque and on the dorsum of the tongue in Swiss adolescents with gingivitis. CLINICAL RELEVANCE: Although gingivitis was a frequent finding in Swiss adolescents, periodontitis was not detected in this population. The dorsum of the tongue appears to represent an important reservoir for periodontopathic bacteria.
Resumo:
Many foals develop diarrhoea within the first two weeks of life which has been suggested to coincide with postpartum oestrus in their dams. To analyse the pathogenesis of this diarrhoea we have determined faecal bacteria in foals and their dams (n=30 each), and serum IGF-1 and gamma-globulins for 6 weeks after birth. In addition, effects of beta-carotene supplementation to mares (group 1: 1000 mg/day, n=15, group 2: control, n=15) on diarrhoea in foals were studied. Diarrhoea occurred in 92 and 79% of foals in groups 1 and 2, respectively, but was not correlated with oestrus in mares. Beta-carotene supplementation was without effect on foal diarrhoea. In mares, bacterial flora remained stable. The percentage of foals with cultures positive for E. coli was low at birth but increased within one day, the percentage positive for Enterococcus sp. was low for 10 days and for Streptococcus sp. and Staphylococcus sp. was low for 2-4 weeks. By 4 weeks of age, bacterial flora in foals resembled an adult pattern. Concentration of serum IGF-1 was low at birth (group 1: 149 +/- 11, group 2: 166 +/- 17ng/ml), increased after day 1 (day 7 group 1: 384 +/- 30, group 2: 372 +/- 36) but at no time differed between groups. Serum gamma-globulin concentration in foals was low before colostrum intake and highest on day 1 (p<0.001 over time). In conclusion, neonatal diarrhoea in foals does not coincide with postpartum oestrus in their dams but with changes in intestinal bacteria and is not influenced by beta-carotene supplementation given to mares.
Resumo:
Bacterial infections present a major challenge in equine medicine. Therapy should be based on bacteriological diagnosis to successfully minimize the increasing number of infections caused by multidrug-resistant bacteria. The present study is a retrospective analysis of bacteriological results from purulent infections in horses admitted at the University Equine Clinic of Bern from 2004 to 2008. From 378 samples analyzed, 557 isolates were identified, of which Staphylococcus aureus, Streptococcus equi subsp. zooepidemicus and coliforms were the most common. Special attention was paid to infections with methicillin-resistant S. aureus (MRSA) ST398 and a non-MRSA, multidrug-resistant S. aureus clone ST1 (BERN100). Screening of newly-admitted horses showed that 2.2 % were carriers of MRSA. Consequent hygiene measures taken at the Clinic helped to overcome a MRSA outbreak and decrease the number of MRSA infections.
Resumo:
Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.
Resumo:
There has been a rapid rise in the emergence of multi-drug-resistant pathogens in the past 10 to 15 yr and some bacteria are now resistant to most antimicrobial agents. Antibiotic use is very restricted on Swiss organic dairy farms, and a purely prophylactic use, such as for dry cow mastitis prevention, is forbidden. A low prevalence of antibiotic resistance in organic farms can be expected compared with conventional farms because the bacteria are infrequently or not exposed to antibiotics. The occurrence of antibiotic resistance was compared between mastitis pathogens (Staphylococcus aureus, nonaureus staphylococci, Streptococcus dysgalactiae, Streptococcus uberis) from farms with organic and conventional dairy production. Clear differences in the percentage of antibiotic resistance were mainly species-related, but did not differ significantly between isolates from cows kept on organic and conventional farms, except for Streptococcus uberis, which exhibited significantly more single resistances (compared with no resistance) when isolated from cows kept on organic farms (6/10 isolates) than on conventional farms (0/5 isolates). Different percentages were found (albeit not statistically significant) in resistance to ceftiofur, erythromycin, clindamycin, enrofloxacin, chloramphenicol, penicillin, oxacillin, gentamicin, tetracycline, and quinupristin-dalfopristin, but, importantly, none of the strains was resistant to amoxicillin-clavulanic acid or vancomycin. Multidrug resistance was rarely encountered. The frequency of antibiotic resistance in organic farms, in which the use of antibiotics must be very restricted, was not different from conventional farms, and was contrary to expectation. The antibiotic resistance status needs to be monitored in organic farms as well as conventional farms and production factors related to the absence of reduced antibiotic resistance in organic farms need to be evaluated.
Comparison of bacterial plaque samples from titanium implant and tooth surfaces by different methods
Resumo:
Studies have shown similarities in the microflora between titanium implants or tooth sites when samples are taken by gingival crevicular fluid (GCF) sampling methods. The purpose of the present study was to study the microflora from curette and GCF samples using the checkerboard DNA-DNA hybridization method to assess the microflora of patients who had at least one oral osseo-integrated implant and who were otherwise dentate. Plaque samples were taken from tooth/implant surfaces and from sulcular gingival surfaces with curettes, and from gingival fluid using filter papers. A total of 28 subjects (11 females) were enrolled in the study. The mean age of the subjects was 64.1 years (SD+/-4.7). On average, the implants studied had been in function for 3.7 years (SD+/-2.9). The proportion of Streptococcus oralis (P<0.02) and Fusobacterium periodonticum (P<0.02) was significantly higher at tooth sites (curette samples). The GCF samples yielded higher proportions for 28/40 species studies (P-values varying between 0.05 and 0.001). The proportions of Tannerella forsythia (T. forsythensis), and Treponema denticola were both higher in GCF samples (P<0.02 and P<0.05, respectively) than in curette samples (implant sites). The microbial composition in gingival fluid from samples taken at implant sites differed partly from that of curette samples taken from implant surfaces or from sulcular soft tissues, providing higher counts for most bacteria studied at implant surfaces, but with the exception of Porphyromonas gingivalis. A combination of GCF and curette sampling methods might be the most representative sample method.
Resumo:
BACKGROUND: Interleukin-1 gene polymorphism (IL-1 gene) has been associated with periodontitis. The present study examined the subgingival microbiota by IL-1 gene status in subjects undergoing supportive periodontal therapy (SPT). METHODS: A total of 151 subjects with known IL-1 gene status (IL-1A +4845/IL-1B -3954) (IL-1 gene) were included in this study. Clinical data and subgingival plaque samples (40 taxa) were collected. These taxa were determined by the checkerboard DNA-DNA hybridization method. RESULTS: Gender, smoking habits (n-par tests), age, and clinical periodontal conditions did not differ by IL-1 gene status. IL-1 gene-negative subjects had a higher total bacterial load (mean difference, 480.4 x 10(5); 95% confidence interval [CI], 77 to 884 x 10(5); P <0.02). The levels of Actinobacillus actinomycetemcomitans (mean difference, 30.7 x 10(5); 95% CI, 2.2 to 59.5 x 10(5); P <0.05), Eubacterium nodatum (mean difference, 4.2 x 10(5); 95% CI, 0.6 to 7.8 x 10(5); P <0.02), Porphyromonas gingivalis (mean difference, 17.9 x 10(5); 95% CI, 1.2 to 34.5 x 10(5); P <0.05), and Streptococcus anginosus (mean difference, 4.0 x 10(5); 95% CI, 0.2 to 7.2 x 10(5); P <0.05) were higher in IL-1 gene-negative subjects, an observation specifically found at sites with probing depths <5.0 mm. CONCLUSIONS: Bleeding on probing did not differ by IL gene status, reflecting clinical SPT efficacy. IL-1 gene-negative subjects had higher levels of periodontal pathogens. This may suggest that among subjects undergoing SPT, a lower bacterial load is required in IL-1 gene-positive subjects to develop the same level of periodontitis as in IL-1 gene-negative subjects.
Resumo:
BACKGROUND: Periodontitis has been identified as a potential risk factor in cardiovascular diseases. It is possible that the stimulation of host responses to oral infections may result in vascular damage and the inducement of blood clotting. The aim of this study was to assess the role of periodontal infection and bacterial burden as an explanatory variable to the activation of the inflammatory process leading to acute coronary syndrome (ACS). METHODS: A total of 161 consecutive surviving cases admitted with a diagnosis of ACS and 161 control subjects, matched with cases according to their gender, socioeconomic level, and smoking status, were studied. Serum white blood cell (WBC) counts, high- and low-density lipoprotein (HDL/LDL) levels, high-sensitivity C-reactive protein (hsC-rp) levels, and clinical periodontal routine parameters were studied. The subgingival pathogens were assayed by the checkerboard DNA-DNA hybridization method. RESULTS: Total oral bacterial load was higher in the subjects with ACS (mean difference: 17.4x10(5); SD: 10.8; 95% confidence interval [CI]: 4.2 to 17.4; P<0.001), and significant for 26 of 40 species including Porphyromonas gingivalis, Tannerella forsythensis, and Treponema denticola. Serum WBC counts, hsC-rp levels, Streptococcus intermedius, and Streptococcus sanguis, were explanatory factors to acute coronary syndrome status (Nagelkerke r2=0.49). CONCLUSION: The oral bacterial load of S. intermedius, S. sanguis, Streptococcus anginosus, T. forsythensis, T. denticola, and P. gingivalis may be concomitant risk factors in the development of ACS.
Resumo:
Background: Periodontitis and caries are common diseases in older adults. Aims: To test if rinsing with chlorhexidine over five years has an impact on the subgingival microbiota. Methods: In a double blind randomized five years chlorhexidine rinse study clinical oral data and subgingival plaque samples were analyzed by the checkerboard DNA-DNA hybridization method. Results: At year 5 subject mean age was 71.2 years (S.D. + 4.1) (56.2% women). Only in subjects with no bone loss did the chlorhexidine rinse group subjects presented with lower total bacterial (DNA) counts (mean diff: 63.1 (x105), S.E diff + 30.1 (x105), 95%CI: 0.8 to 120.5 (x105), p<0.05) [(i.e.Lactobacillus acidophilicus (p<0.05) , Streptococcus oralis (p<0.05), Eikenella. corrodens (p< 0.05), C. gracilis (p<0.01), F.nucl.sp. nucleatum (p< 0.02), Fusobacterium nucl. sp. polymorphum (p<0.02), Neisseria mucosa (p<0.02), Leptothrichia buccalis (p<0.02), and Selenomonas noxia (p<0.050)]. Higher bacterial loads were found for the green (p<0.05), yellow (streptococci spp) (p<0.01), and the ‘other' complexes (p<0.01). Conclusions: Independent of probing pocket depth, older subjects carry a large variety of bacteria associated with periodontitis. The oral microbiota in older subjects is linked to alveolar bone loss and not to probing depth. Chlorhexidine may provide a benefit in preventing periodontitis in older persons.
Resumo:
Objectives: The aims of the present study were (1)to assess the microbiota at implants in function diagnosed as having either peri-implantitis, or mucositis, or being clinically without symptoms of inflammation, (2) to identify explanatory factors to implant status. Material and Methods: Clinical and microbiological data were collected from 138 subjects (mean age: 62.3 ± 14.9) with 524 implants in function for an average of 10.8 years (S.D. +1.5). The checkerboard DNA-DNA hybridization method was used to identify 40 bacterial species. Results: Subjects had poor oral hygiene with a mean % plaque score 53.2 ± 24.4. In 36% of cases periodontitis was reported as the cause for implant therapy. Mucositis was diagnosed in 61.6% and per-implantitis in 15.9% of all cases. Edentulous subjects had at implants with peri-implantitis significantly higher bacterial loads for Streptococcus sanguis (p<0.01), Fusobacterium nucleatum sp. nucleatum (p<0.02), and Leptothrichia buccalis (p<0.05) than did dentate implant subjects. Dentate subjects had higher bacterial loads of Porphyromonas gingivalis (p<0.02). The levels of Fusobacterium nucleatum sp.vincentii and Capnocytophaga ochracea were explanatory to mucositis. Only a history of periodontitis as cause of tooth loss and smoking were explanatory to peri-implantitis. The microbiota was not affect by supportive care patterns. Conclusions: Presence or absence of teeth partly explains the implant microbiota. A past history of periodontitis and smoking are associated with peri-implantitis. The microbiota at implants with mucositis, or peri-implantitis is similar to that of teeth. Supportive periodontal and implant therapy fails to have an impact on implant microbiota and does not prevent mucositis and peri-implantitis.
Resumo:
The aim of this study was to obtain comprehensive data on clinical presentation, microbiology, computed tomography, surgical findings and histology in acute, sub-acute and chronic mastoiditis. We performed a prospective, observational study in children under 16 years of age presenting to our institution during the 2-year period beginning in April 2000. The children were examined and their condition treated in accordance with a standardized protocol elaborated by the paediatric, otolaryngology (ORL) and radiology departments. Thirty-eight patients were hospitalized (22 with acute mastoiditis, seven with sub-acute mastoiditis, nine with chronic mastoiditis). There were 30 complications present in 21 patients (55%). Streptococcus pyogenes was the most common pathogen (7/24 cases), followed by Streptococcus pneumoniae (4/24 cases). Mastoid surgery was performed in 29 patients. Histology of mastoid tissue revealed predominantly acute inflammation in two cases, mixed acute/chronic inflammation in 19 cases and predominantly chronic inflammation in seven cases. Radiologic data were evaluated retrospectively. Spiral, volume-based high-resolution (HR) computed tomography (CT) of the temporal bone had a sensitivity of 100%, specificity of 38%, positive predictive value (PPV) of 50% and negative predictive value (NPV) of 100% in detecting coalescence of mastoid trabeculae. Cranial CT with contrast had a sensitivity of 80%, specificity of 94%, PPV of 80% and NPV of 94% in identifying intra-cranial extension. Conclusion: histological evidence suggests that sub-acute/chronic infection underlies not only sub-acute and chronic mastoiditis, but most cases of acute mastoiditis as well. HR-CT of the temporal bone is effective in ruling out coalescence. Cranial CT is valuable in identifying intra-cranial extension. Cranial and HR-CT are recommended in the examination of children with mastoiditis.
Resumo:
In experimental bacterial meningitis, matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) contribute to brain damage. MMP-9 increases in cerebrospinal fluid (CSF) during bacterial meningitis and is associated with the brain damage that is a consequence of the disease. This study assesses the origin of MMP-9 in bacterial meningitis and how ROS modulate its activity. Rat brain-slice cultures and rat polymorphonuclear cells (PMNs) that had been challenged with capsule-deficient heat-inactivated Streptococcus pneumoniae R6 (hiR6) released MMP-9. Coincubation with either catalase, with the myeloperoxidase inhibitor azide, or with the hypochlorous acid scavenger methionine almost completely prevented activation, but not the release, of MMP-9, in supernatants of human PMNs stimulated with hiR6. Thus, in bacterial meningitis, both brain-resident cells and invading PMNs may act as sources of MMP-9, and stimulated PMNs may activate MMP-9 via an ROS-dependent pathway. MMP-9 activation by ROS may represent a target for therapeutic intervention in bacterial meningitis.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.
Resumo:
Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.