979 resultados para SRS mutant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the late 1970s pyrimethamine-sulfadoxine (PS; FansidarTM Hoffman-LaRoche, Basel) has been used as first line therapy for uncomplicated malaria in the Amazon basin. Unfortunately, resistance has developed over the last ten years in many regions of the Amazon and PS is no longer recommended for use in Brazil. In vitro resistance to pyrimethamine and cycloguanil (the active metabolite of proguanil) is caused by specific point mutations in Plasmodium falciparum dihydrofolate reductase (DHFR), and in vitro resistance to sulfadoxine has been associated with mutations in dihydropteroate synthase (DHPS). In association with a proguanil-sulfamethoxazole clinical trial in Brazil, we performed a nested mutation-specific polymerase chain reaction to measure the prevalence of DHFR mutations at codons 50, 51, 59, 108 and 164 and DHPS mutations at codons 436, 437, 540, 581 and 613 at three sites in the Brazilian Amazon. Samples from two isolated towns showed a high degree of homogeneity, with the DHFR Arg-50/Ile-51/Asn-108 and DHPS Gly-437/Glu-540/Gly-581 mutant genotype accounting for all infections in Peixoto de Azevedo (n = 15) and 60% of infections in Apiacás (n = 10), State of Mato Grosso. The remaining infections in Apiacás differed from this predominant genotype only by the addition of the Bolivia repeat at codon 30 and the Leu-164 mutation in DHFR. By contrast, 17 samples from Porto Velho, capital city of the State of Rondônia, with much in- and out-migration, showed a wide variety of DHFR and DHPS genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the characteristic features of the structure of the epithelial sodium channel family (ENaC) is the presence of two highly conserved cysteine-rich domains (CRD1 and CRD2) in the large extracellular loops of the proteins. We have studied the role of CRDs in the functional expression of rat alphabetagamma ENaC subunits by systematically mutating cysteine residues (singly or in combinations) into either serine or alanine. In the Xenopus oocyte expression system, mutations of two cysteines in CRD1 of alpha, beta, or gamma ENaC subunits led to a temperature-dependent inactivation of the channel. In CRD1, one of the cysteines of the rat alphaENaC subunit (Cys158) is homologous to Cys133 of the corresponding human subunit causing, when mutated to tyrosine (C133Y), pseudohypoaldosteronism type 1, a severe salt-loosing syndrome in neonates. In CRD2, mutation of two cysteines in alpha and beta but not in the gamma subunit also produced a temperature-dependent inactivation of the channel. The main features of the mutant cysteine channels are: (i) a decrease in cell surface expression of channel molecules that parallels the decrease in channel activity and (ii) a normal assembly or rate of degradation as assessed by nondenaturing co-immunoprecipitation of [35S]methionine-labeled channel protein. These data indicate that the two cysteines in CRD1 and CRD2 are not a prerequisite for subunit assembly and/or intrinsic channel activity. We propose that they play an essential role in the efficient transport of assembled channels to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (P(int) and P(inR)) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on P(inR), whereas one of the gene products from the P(inR)-controlled operon (InrR) transmits activation to P(int) and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the P(int) and P(inR) promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated P(int) and P(inR), whereas a double-copy rpoS-mcherry-containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate P(inR) and thus ICEclc transfer. Double promoter-reporter fusions confirmed that expression of P(inR) is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from P(int) is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genes involved in the biosynthesis of biotin were identified in the hyphal fungus Aspergillus nidulans through homology searches and complementation of Escherichia coli biotin-auxotrophic mutants. Whereas the 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase are encoded by distinct genes in bacteria and the yeast Saccharomyces cerevisiae, both activities are performed in A. nidulans by a single enzyme, encoded by the bifunctional gene bioDA. Such a bifunctional bioDA gene is a genetic feature common to numerous members of the ascomycete filamentous fungi and basidiomycetes, as well as in plants and oömycota. However, unlike in other eukaryota, the three bio genes contributing to the four enzymatic steps from pimeloyl-CoA to biotin are organized in a gene cluster in pezizomycotina. The A. nidulans auxotrophic mutants biA1, biA2 and biA3 were all found to have mutations in the 7,8-diaminopelargonic acid synthase domain of the bioDA gene. Although biotin auxotrophy is an inconvenient marker in classical genetic manipulations due to cross-feeding of biotin, transformation of the biA1 mutant with the bioDA gene from either A. nidulans or Aspergillus fumigatus led to the recovery of well-defined biotin-prototrophic colonies. The usefulness of bioDA gene as a novel and robust transformation marker was demonstrated in co-transformation experiments with a green fluorescent protein reporter, and in the efficient deletion of the laccase (yA) gene via homologous recombination in a mutant lacking non-homologous end-joining activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CARMA1 is a lymphocyte-specific member of the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins, which coordinate signaling pathways emanating from the plasma membrane. CARMA1 interacts with Bcl10 via its caspase-recruitment domain (CARD). Here we investigated the role of CARMA1 in T cell activation and found that T cell receptor (TCR) stimulation induced a physical association of CARMA1 with the TCR and Bcl10. We found that CARMA1 was constitutively associated with lipid rafts, whereas cytoplasmic Bcl10 translocated into lipid rafts upon TCR engagement. A CARMA1 mutant, defective for Bcl10 binding, had a dominant-negative (DN) effect on TCR-induced NF-kappa B activation and IL-2 production and on the c-Jun NH(2)-terminal kinase (Jnk) pathway when the TCR was coengaged with CD28. Together, our data show that CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation and CD28 costimulation-dependent Jnk activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: betaTC-tet (H2(k)) is a conditional insulinoma cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Transgenic expression of several proteins implicated in the apoptotic pathways increase the resistance of betaTC-tet cells in vitro. We tested in vivo the sensitivity of the cells to rejection and the protective effect of genetic alterations in NOD mice. METHODS: betaTC-tet cells and genetically engineered lines expressing Bcl-2 (CDM3D), a dominant negative mutant of MyD88 or SOCS-1 were transplanted in diabetic female NOD mice or in male NOD mice with diabetes induced by high-dose streptozotocin. Survival of functional cell grafts in NOD-scid mice was also analyzed after transfer of splenocytes from diabetic NOD mice. Autoreactive T-cell hybridomas and splenocytes from diabetic NOD mice were stimulated by betaTC-tet cells. RESULTS: betaTC-tet cells and genetically engineered cell lines were all similarly rejected in diabetic NOD mice and in NOD-scid mice after splenocyte transfer. In 3- to 6-week-old male NOD mice treated with high-dose streptozotocin, the cells temporarily survived, in contrast with C57BL/6 mice treated with high-dose streptozotocin (indefinite survival) and untreated 3- to 6-week-old male NOD mice (rejection). The protective effect of high-dose streptozotocin was lost in older male NOD mice. betaTC-tet cells did not stimulate autoreactive T-cell hybridomas, but induced IL-2 secretion by splenocytes from diabetic NOD mice. CONCLUSION/INTERPRETATION: The autoimmune process seems to play an important role in the destruction of betaTC-tet cells in NOD mice. Genetic manipulations intended at increasing the resistance of beta cells were inefficient. Similar approaches should be tested in vivo as well as in vitro. High dose streptozotocin influences immune rejection and should be used with caution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S. aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS. Although not essential, deletion of all three LCP proteins severely impairs cell division. We show here that VraSR-dependent CWSS expression was up to 250-fold higher in single, double and triple LCP mutants than in wild type S. aureus in the absence of external stress. The LCP triple mutant was virtually depleted of wall teichoic acids (WTA), which could be restored to different degrees by any of the single LCP proteins. Subinhibitory concentrations of tunicamycin, which inhibits the first WTA synthesis enzyme TarO (TagO), could partially complement the severe growth defect of the LCP triple mutant. Both of the latter findings support a role for S. aureus LCP proteins in late WTA synthesis, as in Bacillus subtilis where LCP proteins were recently proposed to transfer WTA from lipid carriers to the cell wall peptidoglycan. Intrinsic activation of the CWSS upon LCP deletion and the fact that LCP proteins were essential for WTA-loading of the cell wall, highlight their important role(s) in S. aureus cell envelope biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oviposition attractants could be used for monitoring as well as controlling mosquitoes by attracting them to lay eggs at chosen sites. In the present study, culture filtrates of seven bacterial species were tested for their attractancy against gravid females of Culex quinquefasciatus. When their oviposition active indices (OAI) were studied, the culture filtrates of Bacillus cereus and Pseudomonas fluorescens exhibited oviposition attractancy (OAI = >0.3) at 100 ppm and the OAI were respectively 0.70 and 0.47. Culture filtrates of B. thuringiensis var. israelensis (wild type), B. t. var. israelensis (mutant) and B. sphaericus showed attractancy at 2000 ppm with OAI of respectively 0.71, 0.59 and 0.68. However, the OAI of B. megaterium as well as Azospirillum brasilense was 0.13 (at 2000 ppm), which was less than 0.3 required to be considered them as attractants. When the oviposition attractancy of the bacterial culture filtrates were compared with that of a known oviposition attractant, p-cresol (at 10 ppm), the culture filtrates of B. t. var. israelensis (wild type) and B. cereus were found to be more active than p-cresol, respectively with 64.2 and 54.3% oviposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of reviewThis review provides information and an update on stereotactic radiosurgery (SRS) equipment, with a focus on intracranial lesions and brain neoplasms.Recent findingsGamma Knife radiosurgery represents the gold standard for intracranial radiosurgery, using a dedicated equipment, and has recently evolved with a newly designed technology, Leksell Gamma Knife Perfexion. Linear accelerator-based radiosurgery is more recent, and originally based on existing systems, either adapted or dedicated to radiosurgery. Equipment incorporating specific technologies, such as the robotic CyberKnife system, has been developed. Novel concepts in radiation therapy delivery techniques, such as intensity-modulated radiotherapy, were also developed; their integration with computed tomography imaging and helical delivery has led to the TomoTherapy system. Recent data on the management of intracranial tumors with radiosurgery illustrate the trend toward a larger use and acceptance of this therapeutic modality.SummarySRS has become an important alternative treatment for a variety of lesions. Each radiosurgery system has its advantages and limitations. The 'perfect' and ubiquitous system does not exist. The choice of a radiosurgery system may vary with the strategy and needs of specific radiosurgery programs. No center can afford to acquire every technology, and strategic choices have to be made. Institutions with large neurosurgery and radiation oncology programs usually have more than one system, allowing optimization of the management of patients with a choice of open neurosurgery, radiosurgery, and radiotherapy. Given its minimally invasive nature and increasing clinical acceptance, SRS will continue to progress and offer new advances as a therapeutic tool in neurosurgery and radiotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An optimally cross-linked peptidoglycan requires both transglycosylation and transpeptidation, provided by class A and class B penicillin-binding proteins (PBPs). Streptococcus gordonii possesses three class A PBPs (PBPs 1A, 1B, and 2A) and two class B PBPs (PBPs 2B and 2X) that are important for penicillin resistance. High-level resistance (MIC, > or =2 microg/ml) requires mutations in class B PBPs. However, although unmutated, class A PBPs are critical to facilitate resistance development (M. Haenni and P. Moreillon, Antimicrob. Agents Chemother. 50:4053-4061, 2006). Thus, their overexpression might be important to sustain the drug. Here, we determined the promoter regions of the S. gordonii PBPs and compared them to those of other streptococci. The extended -10 box was highly conserved and complied with a sigma(A)-type promoter consensus sequence. In contrast, the -35 box was poorly conserved, leaving the possibility of differential PBP regulation. Gene expression in a penicillin-susceptible parent (MIC, 0.008 microg/ml) and a high-level-resistant mutant (MIC, 2 microg/ml) was monitored using luciferase fusions. In the absence of penicillin, all PBPs were constitutively expressed, but their expression was globally increased (1.5 to 2 times) in the resistant mutant. In the presence of penicillin, class A PBPs were specifically overexpressed both in the parent (PBP 2A) and in the resistant mutant (PBPs 1A and 2A). By increasing transglycosylation, class A PBPs could promote peptidoglycan stability when transpeptidase is inhibited by penicillin. Since penicillin-related induction of class A PBPs occurred in both susceptible and resistant cells, such a mutation-independent facilitating mechanism could be operative at each step of resistance development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype-phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.