994 resultados para SPINAL GLUTAMATERGIC RECEPTOR
Resumo:
The involvement of μ-opioid receptors in different behavioral responses elicited by nicotine was explored by using μ-opioid receptor knock-out mice. The acute antinociceptive responses induced by nicotine in the tail-immersion and hot-plate tests were reduced in the mutant mice, whereas no difference between genotypes was observed in the locomotor responses. The rewarding effects induced by nicotine were then investigated using the conditioning place-preference paradigm. Nicotine produced rewarding responses in wild-type mice but failed to produce place preference in knock-out mice, indicating the inability of this drug to induce rewarding effects in the absence of μ-opioid receptors. Finally, the somatic expression of the nicotine withdrawal syndrome, precipitated in dependent mice by the injection of mecamylamine, was evaluated. Nicotine withdrawal was significantly attenuated in knock-out mutants when compared with wild-type mice. In summary, the present results show that μ-opioid receptors are involved in the rewarding responses induced by nicotine and participate in its antinociceptive responses and the expression of nicotine physical dependence.
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
Previous pharmacological studies have indicated the possible existence of functional interactions between μ-, δ- and κ-opioid receptors in the CNS. We have investigated this issue using a genetic approach. Here we describe in vitro and in vivo functional activity of δ- and κ-opioid receptors in mice lacking the μ-opioid receptor (MOR). Measurements of agonist-induced [35S]GTPγS binding and adenylyl cyclase inhibition showed that functional coupling of δ- and κ-receptors to G-proteins is preserved in the brain of mutant mice. In the mouse vas deferens bioassay, deltorphin II and cyclic[d-penicillamine2,d-penicillamine5] enkephalin exhibited similar potency to inhibit smooth muscle contraction in both wild-type and MOR −/− mice. δ-Analgesia induced by deltorphin II was slightly diminished in mutant mice, when the tail flick test was used. Deltorphin II strongly reduced the respiratory frequency in wild-type mice but not in MOR −/− mice. Analgesic and respiratory responses produced by the selective κ-agonist U-50,488H were unchanged in MOR-deficient mice. In conclusion, the preservation of δ- and κ-receptor signaling properties in mice lacking μ-receptors provides no evidence for opioid receptor cross-talk at the cellular level. Intact antinociceptive and respiratory responses to the κ-agonist further suggest that the κ-receptor mainly acts independently from the μ-receptor in vivo. Reduced δ-analgesia and the absence of δ-respiratory depression in MOR-deficient mice together indicate that functional interactions may take place between μ-receptors and central δ-receptors in specific neuronal pathways.
Resumo:
The human olfactory receptor repertoire is reduced in comparison to other mammalsand to other non-human primates. Nonetheless, this olfactory decline opens an opportunity forevolutionary innovation and improvement. In the present study, we focus on an olfactoryreceptor gene, OR5I1, which had previously been shown to present an excess of amino acidreplacement substitutions between humans and chimpanzees. We analyze the geneticvariation in OR5I1 in a large worldwide human panel and find an excess of derived allelessegregating at relatively high frequencies in all populations. Additional evidence for selectionincludes departures from neutrality in allele frequency spectra tests but no unusually extendedhaplotype structure. Moreover, molecular structural inference suggests that one of thenonsynonymous polymorphisms defining the presumably adaptive protein form of OR5I1may alter the functional binding properties of the olfactory receptor. These results arecompatible with positive selection having modeled the pattern of variation found in the OR5I1gene and with a relatively ancient, mild selective sweep predating the “Out of Africa”expansion of modern humans.
Resumo:
Repeated THC administration produces motivational and somaticadaptive changes leading to dependence in rodents. Toinvestigate the molecular basis for cannabinoid dependenceand its possible relationship with the endogenous opioid system,we explored Δ9-tetrahydrocannabinol (THC) activity in mice lacking μ-, δ- or κ-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal were minimally modified in mutant animals. In contrast, profound phenotypic changes are observed in several place conditioning protocols that reveal both THC rewarding and aversive properties. Absence of μ receptors abolishes THC place preference. Deletion of κ receptors ablates THC place aversion and furthermore unmasks THC place preference. Thus, an opposing activity of μ- and κ-opioid receptors in modulating reward pathways forms the basis for the dual euphoric–dysphoric activity of THC.
Resumo:
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behavior and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared to wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the dorsal raphe nucleus, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an overexpression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the dorsal raphe nucleus by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.
Resumo:
A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for theiraffinities at the dopamine D1, D2, and D3 receptors. Some of these compounds showed high D2 and/orD3 affinity and selectivity over the D1 receptor. The SAR study of these compounds revealed structuralcharacteristics that decisively influenced their D2 and D3 affinities. Structural models of the complexesbetween some of the most representative compounds of this series and the D2 and D3 receptors wereobtained with the aim of rationalizing the observed experimental results. Moreover, selected compoundsshowed moderate binding affinity on 5-HT2A which could contribute to reducing the occurrence of extrapyramidalside effects as potential antipsychotics.
Resumo:
Schizophrenia is a devastating mental disorder that has a largeimpact on the quality of life for those who are afflicted and isvery costly for families and society.[1] Although the etiology ofschizophrenia is still unknown and no cure has yet beenfound, it is treatable, and pharmacological therapy often producessatisfactory results. Among the various antipsychoticdrugs in use, clozapine is widely recognized as one ofthemost clinically effective agents, even if it elicits significant sideeffects such as metabolic disorders and agranulocytosis. Clozapineand the closely related compound olanzapine are goodexamples ofdrug s with a complex multi-receptor profile ;[2]they have affinities toward serotonin, dopamine, a adrenergic,muscarinic, and histamine receptors, among others.
Resumo:
An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.
Resumo:
Genetic and functional data indicate that variation in the expression of the neurotrophin-3 receptor gene (NTRK3) may have an impact on neuronal plasticity, suggesting a role for NTRK3 in the pathophysiology of anxiety disorders. MicroRNA (miRNA) posttranscriptional gene regulators act by base-pairing to specific sequence sites, usually at the 3'UTR of the target mRNA. Variants at these sites might result in gene expression changes contributing to disease susceptibility. We investigated genetic variation in two different isoforms of NTRK3 as candidate susceptibility factors for anxiety by resequencing their 3'UTRs in patients with panic disorder (PD), obsessive-compulsive disorder (OCD), and in controls. We have found the C allele of rs28521337, located in a functional target site for miR-485-3p in the truncated isoform of NTRK3, to be significantly associated with the hoarding phenotype of OCD. We have also identified two new rare variants in the 3'UTR of NTRK3, ss102661458 and ss102661460, each present only in one chromosome of a patient with PD. The ss102661458 variant is located in a functional target site for miR-765, and the ss102661460 in functional target sites for two miRNAs, miR-509 and miR-128, the latter being a brain-enriched miRNA involved in neuronal differentiation and synaptic processing. Interestingly, these two variants significantly alter the miRNA-mediated regulation of NTRK3, resulting in recovery of gene expression. These data implicate miRNAs as key posttranscriptional regulators of NTRK3 and provide a framework for allele-specific miRNA regulation of NTRK3 in anxiety disorders.
Resumo:
The aim of this investigation was to examine the interrelation between renal mRNA levels of renin and angiotensin II receptor type 1 (AT1) in a renin-dependent form of experimental hypertension. Rats were studied 4 weeks after unilateral renal artery clipping. Mean blood pressure and plasma renin activity were significantly higher in the hypertensive rats (n = 10 206 +/- mm Hg and 72.4 +/- 20.9 ng/mL-1/h-1, respectively) than in sham-operated controls (n = 10, 136 +/- 3 mm Hg and 3.3 +/- 0.5 ng/mL-1/h, respectively). Northern blot analysis of polyA+ RNA obtained from the kidneys of renal hypertensive rats showed increased levels of renin mRNA in the clipped kidney, whereas a decrease was observed in the unclipped kidney. Plasma renin activity was directly correlated with renin mRNA expression of the poststenotic kidney (r = .94, P < .01). AT1 mRNA expression was lower in both kidneys of the hypertensive rats. This downregulation was specific for the AT1A subtype since the renal expression of the AT1B subtype remained normal in hypertensive rats. The downregulation of the renal AT1A receptor may be due to high circulating angiotensin II levels. This is supported by the significant inverse correlation (r = .71, P < .01) between plasma renin activity and AT1A mRNA expression measured in the clipped kidney of the hypertensive rats.
Resumo:
Background: 3, 4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug widely abused by young people. The endocannabinoid system is involved in the addictive processes induced by different drugs of abuse. However, the role of this system in the pharmacological effects of MDMA has not been yet clarified.Methods: Locomotion, body temperature and anxiogenic-like responses were evaluated after acute MDMA administration in CB1 knockout mice. Additionally, MDMA rewarding properties were investigated in the place conditioning and the intravenous self-administration paradigms. Extracellular levels of DA in the nucleus accumbens were also analyzed after a single administration of MDMA by in vivo microdialysis. Results: Acute MDMA administration increased locomotor activity, body temperature and anxiogenic-like responses in wild type mice, but these responses were lower or abolished in knockout animals. MDMA produced similar conditioned place preference and increased dopamine extracellular levels in the nucleus accumbens in both genotypes. Nevertheless, CB1 knockout mice failed to self-administer MDMA at any of the doses used. Conclusions: These results indicate that CB1 cannabinoid receptors play an important role in the acute prototypical effects of MDMA, and are essential in the acquisition of an operant behavior to self-administer this drug.
Resumo:
Introduction: Measures of the degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal, and dural sac cross sectional area vary, and do not correlate with symptoms or results of surgery. We created a grading system, comprised of seven categories, based on the morphology of the dural sac and its contents as seen on T2 axial images. The categories take into account the ratio of rootlet/ CSF content. Grade A indicates no significant compression, grade D is equivalent to a total myelograhic block. We compared this classification with commonly used criteria of severity of stenosis. Methods: Fifty T2 axial MRI images taken at disc level from 27 symptomatic LSS patients undergoing decompressive surgery were classified twice by two radiologists and three spinal surgeons working at different institutions and countries. Dural sac cross-sectional surface area and AP diameter of the canal were measured both at disc and pedicle level from DICOM images using OsiriX software. Intraand inter-observer reliability were assessed using Cohen's, Fleiss' kappa statistics, and t test. Results: For the morphological grading the average intra-and inter observer kappas were 0.76 and 0.69+, respectively, for physicians working in the study originating country. Combining all observers the kappa values were 0.57 ± 0.19. and 0.44 ± 0.19, respectively. AP diameter and dural sac cross-sectional area measurements showed no statistically significant differences between observers. No correlation between morphological grading and AP diameter or dural sac crosssectional areawas observed in 13 (26%) and 8 cases (16%), respectively. Discussion: The proposed morphological grading relies on the identification of the dural sac and CSF better seen on full MRI series. This was not available to the external observers, which might explain the lower overall kappa values. Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. The absence of a strict correlation with the dural sac surface suggests that measuring the surface alone might be insufficient in defining LSS as it is essentially a mismatch between the spinal canal and its contents. This grading is now adopted in our unit and further studies concentrating on relation between morphology, clinical symptoms and surgical results are underway.
Resumo:
The interaction of the T cell antigen receptor with a photoreactive antigenic peptide derivative bound covalently to the H-2Kd (Kd) molecule was studied by photoaffinity labeling on cloned, CD8 positive cytotoxic T lymphocytes. The Kd-restricted Plasmodium berghei circumsporozoite peptide 253-260 (YIPS-AEKI) was conjugated with iodo-4-azidosalicylic acid at the N terminus and with 4-azidobenzoic acid at the T cell receptor residue Lys-259. Cell-associated or soluble Kd molecules were photoaffinity-labeled with the peptide derivative by selective photoactivation of the N-terminal photoreactive group. Incubation of cell-associated or soluble covalent Kd-peptide derivative complexes (ligands) with cytotoxic T lymphocytes that recognized this peptide derivative and activation of the orthogonal photoreactive group resulted in specific photoaffinity labeling of the T cell receptor. The labeling was inhibitable by an anti-Kd antibody and was absent on Kd-restricted cytotoxic T lymphocytes of different specificity. The binding of the soluble ligand reached a maximum after 2-4 min at 37 degrees C, after 30 min at 18 degrees C, and after 3 h at 4 degrees C. In contrast, binding of the cell-associated ligand reached a transient maxima after 50 and 110 min at 37 and 18 degrees C, respectively. The degree of binding at 37 degrees C was approximately 30% lower than that at 18 degrees C. No binding took place at 4 degrees C. Inhibition studies with antibodies and drugs indicated that the binding of the cell-associated, but not the soluble ligand, was highly dependent on T cell-target cell conjugate formation, whereas the binding of the soluble ligand was greatly dependent on CD8.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.