945 resultados para SINGLE-STRANDED-DNA
Resumo:
Expansion of trinucleotide repeat DNA of the classes CAG�·CTG, CGG�·CCG and GAA�·TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG�·CTG > CGG�·CCG = GAA�·TTC, the highly flexible CAG�·CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G�·C to T�·A mutation at the 9th position of the CAG�·CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAGâ�¢CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.
Resumo:
Objective
To determine the incidence of Fas positivity and DNA double-strand breaks (DSB) as indicators of early- and late-stage apoptosis in ejaculated sperm.
Design
Fas positivity was assessed by flow cytometry and DSB by the neutral Comet assay.
Setting
Andrology Laboratory, Royal Maternity Hospital, Belfast, Northern Ireland, United Kingdom.
Patient(s) and intervention(s)
Forty-five infertile men undergoing infertility investigations and 10 fertile men undergoing vasectomies.
Main outcome measure(s)
Percentage Fas-positive cells, percentage DNA fragmentation, olive tail moment.
Result(s)
The apoptotic marker Fas was detected in ejaculated sperm, with a higher incidence of Fas positivity in teratozoospermic and asthenozoospermic than in normozospermic semen. No Fas positivity was observed in fertile mens' sperm. Deoxyribonucleic acid fragmentation (DSB) was greater in infertile than in fertile men's sperm and also greater in sperm in semen than in sperm prepared for assisted conception. There was an inverse relationship between DSB and both sperm concentration and motility. There was no relationship between Fas positivity and DNA damage.
Conclusion(s)
Fas was expressed in sperm of infertile men. In contrast, DNA fragmentation was observed in all sperm of fertile and infertile men and correlated with inadequate concentration and motility, which suggests that sperm DSB are ubiquitous and are not solely associated with apoptosis.
Resumo:
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Resumo:
Background. Diabetic nephropathy is a leading cause of end-stage renal disease. Premature mortality is common in patients with nephropathy, largely due to cardiovascular disease. Genetic variants implicated in macrovascular disease are therefore excellent candidates to assess for association with diabetic nephropathy. Recent genome-wide association studies have identified a total of 15 single-nucleotide polymorphisms (SNPs) that are reproducibly associated with cardiovascular disease.
Methods. We initially assessed these SNPs for association in UK type 1 diabetic patients with (cases; n = 597) and without (controls; n = 502) nephropathy using iPLEXTM and TaqMan® assays. Replication studies were performed with DNA genotyped in a total of 2668 individuals from the British Isles.
Results. One SNP (rs4420638) on chromosome 19q13 was found to be significantly associated with diabetic nephropathy before (P = 0.0002) and after correction for multiple testing (Pcorrected = 0.002). We replicated this finding in a phenotypically similar case–control collection comprising 709 individuals with type 1 diabetes (P = 0.002; combined P < 0.00001; OR = 1.54, 95% CI: 1.29–1.84).
Conclusions. Our case–control data suggest that rs4420638, or a functional SNP in linkage disequilibrium with this SNP, may be associated with diabetic nephropathy.
Resumo:
Aims/hypothesis: SMAD proteins are involved in multiple signalling pathways and are key modulators of gene expression. We hypothesised that genetic variation in selected SMAD genes contributes to susceptibility to diabetic nephropathy. Methods: We selected 13 haplotype tag (ht) single nucleotide polymorphisms (SNPs) from 67 variants identified by resequencing the SMAD2 and SMAD3 genes. For SMAD1, SMAD4 and SMAD5 genes, genotype data were downloaded for 217 SNPs from Phase II of the International HapMap project. Of these, 85 SNPs met our inclusion criteria, resulting in the selection of 13 tag SNPs for further investigation. A case-control approach was employed, using 267 nephropathic patients and 442 controls with type 1 diabetes from Ireland. Two further populations (totalling 1,407 patients, 2,238 controls) were genotyped to validate initial findings. Genotyping was conducted using iPLEX, TaqMan and gel electrophoresis.
Results: The distribution of genotypes was in Hardy-Weinberg equilibrium. Analysis by the ? 2 test of genotype and allele frequencies in patients versus controls in the Irish population (n?=?709) revealed evidence for the association of one allele at 5% level of significance (rs10515478, p uncorrected?=?0.006; p corrected?=?0.04). This finding represents a relatively small difference in allele frequency of 6.4% in the patient group compared with 10.7% in the control group; this difference was not supported in subsequent investigations using DNA from European individuals with similar phenotypic characteristics.
Conclusions/interpretation: We selected an appropriate subset of variants for the investigation of common genetic risk factors and assessed SMAD1 to SMAD5 genes for association with diabetic nephropathy. We conclude that common polymorphisms in these genes do not strongly influence genetic susceptibility to diabetic nephropathy in white individuals with type 1 diabetes mellitus.
Resumo:
Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.
Resumo:
The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
The comet assay is a sensitive tool for estimation of DNA damage and repair at the cellular level, requiring only a very small number of cells. In comparing the levels of damage or repair in different cell samples, it is possible that small experimental effects could be confounded by different cell cycle states in the samples examined, if sensitivity to DNA damage, and repair capacity, varies with the cell cycle. We assessed this by arresting HeLa cells in various cell cycle stages and then exposing them to ionizing radiation. Unirradiated cells demonstrated significant differences in strand break levels measured by the comet assay (predominantly single-strand breaks) at different cell cycle stages, increasing from G1 into S and falling again in G2. Over and above this variation in endogenous strand break levels, a significant difference in susceptibility to breaks induced by 3.5 Gy ionizing radiation was also evident in different cell cycle phases. Levels of induced DNA damage fluctuate throughout the cycle, with cells in G1 showing slightly lower levels of damage than an asynchronous population. Damage increases as cells progress through S phase before falling again towards the end of S phase and reaching lowest levels in M phase. The results from repair experiments (where cells were allowed to repair for 10 min after exposure to ionizing radiation) also showed differences throughout the cell cycle with G1-phase cells apparently being the most efficient at repair and M-phase cells the least efficient. We suggest, therefore, that in experiments where small differences in DNA damage and repair are to be investigated with the comet assay, it may be desirable to arrest cells in a specific stage of the cell cycle or to allow for differential cycle distribution.
Resumo:
The "phiKMV-like viruses" comprise an important genus of T7 related phages infecting Pseudomonas aeruginosa. The genomes of these bacteriophages have localized single-strand interruptions (nicks), a distinguishing genomic trait previously thought to be unique for T5 related coliphages. Analysis of this feature in the newly sequenced phage fkF77 shows all four nicks to be localized on the non-coding DNA strand. They are present with high frequencies within the phage population and are introduced into the phage DNA at late stages of the lytic cycle. The general consensus sequence in the nicks (5'-CGACxxxxxCCTAoh pCTCCGG-3') was shown to be common among all phiKMV-related phages.
Resumo:
The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.
Resumo:
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A significant proportion of human cancers overexpress DNA polymerase beta (Pol beta), the major DNA polymerase involved in base excision repair. The underlying mechanism and biological consequences of overexpression of this protein are unknown. We examined whether Pol beta, expressed at levels found in tumor cells, is involved in the repair of DNA damage induced by oxaliplatin treatment and whether the expression status of this protein alters the sensitivity of cells to oxaliplatin. DNA damage induced by oxaliplatin treatment of HCT116 and HT29 colon cancer cells was observed to be associated with the stabilization of Pol beta protein on chromatin. In comparison with HCT116 colon cancer cells, isogenic oxaliplatin-resistant (HCT-OR) cells were found to have higher constitutive levels of Pol beta protein, faster in vitro repair of a DNA substrate containing a single nucleotide gap and faster repair of 1,2-GG oxaliplatin adduct levels in cells. In HCT-OR cells, small interfering RNA knockdown of Pol beta delayed the repair of oxaliplatin-induced DNA damage. In a different model system, Pol beta-deficient fibroblasts were less able to repair 1,2-GG oxaliplatin adducts and were hypersensitive to oxaliplatin treatment compared with isogenic Pol beta-expressing cells. Consistent with previous studies, Pol beta-deficient mouse fibroblasts were not hypersensitive to cisplatin treatment. These data provide the first link between oxaliplatin sensitivity and DNA repair involving Pol beta. They demonstrate that Pol beta modulates the sensitivity of cells to oxaliplatin treatment. Oncogene (2010) 29, 463-468; doi:10.1038/onc.2009.327; published online 19 October 2009
Resumo:
Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.