966 resultados para SINGLE-CRYSTAL
Resumo:
Mn ions were implanted to n-type Si(0 0 1) single crystal by low-energy ion beam deposition technique with an energy of 1000 eV and a dose of 7.5 x 10^{17} cm^{-2}. The samples were held at room temperature and at 300degreesC during implantation. Auger electron spectroscopy depth profiles of samples indicate that the Mn ions reach deeper in the sample implanted at 300degreesC than in the sample implanted at room temperature. X-ray diffraction measurements show that the structure of the sample implanted at room temperature is amorphous while that of the sample implanted at 300degreesC is crystallized. There are no new phases found except silicon both in the two samples. Atomic force microscopy images of samples indicate that the sample implanted at 300degreesC has island-like humps that cover the sample surface while there is no such kind of characteristic in the sample implanted at room temperature. The magnetic properties of samples were investigated by alternating gradient magnetometer (AGM). The sample implanted at 300degreesC shows ferromagnetic behavior at room temperature.
Resumo:
We present a technique for independently exciting two resonant modes of vibration in a single-crystal silicon bulk mode microresonator using the same electrode configuration through control of the polarity of the DC actuation voltage. Applications of this technique may include built-in temperature compensation by the simultaneous selective excitation of two closely spaced modes that may have different temperature coefficients of resonant frequency. The technique is simple and requires minimum circuit overhead for implementation. The technique is implemented on square plate resonators with quality factors as high as 3.06 × 106. Copyright © 2008 by ASME.
Resumo:
This paper reports on the design and electrical characterization of a single crystal silicon micromechanical square-plate resonator. The microresonator has been excited in the anti-symmetrical wine glass mode at a resonant frequency of 5.166 MHz and exhibits an impressive quality factor (Q) of 3.7 × 106 at a pressure of 33 mtorr. The device has been fabricated in a commercial foundry process. An associated motional resistance of approximately 50 kΩ using a dc bias voltage of 60 V is measured for a transduction gap of 2 νm due to the ultra-high Q of the resonator. This result corresponds to a frequency-Q product of 1.9 × 1013, the highest reported for a fundamental mode single-crystal silicon resonator and on par with some of the best quartz crystal resonators. The results are indicative of the superior performance of silicon as a mechanical material, and show that the wine glass resonant mode is beneficial for achieving high quality factors allowed by the material limit. © 2009 IOP Publishing Ltd.
Resumo:
Abstract-This paper reports a single-crystal silicon mass sensor based on a square-plate resonant structure excited in the wine glass bulk acoustic mode at a resonant frequency of 2.065 MHz and an impressive quality factor of 4 million at 12 mtorr pressure. Mass loading on the resonator results in a linear downshift in the resonant frequency of this device, wherein the measured sensitivity is found to be 175 Hz cm2/μg. The silicon resonator is embedded in an oscillator feedback loop, which has a short-term frequency stability of 3 mHz (approximately 1.5 ppb) at an operating pressure of 3.2 mtorr, corresponding to an equivalent mass noise floor of 17 pg/cm2. Possible applications of this device include thin film monitoring and gas sensing, with the potential added benefits of scalability and integration with CMOS technology. © 2008 IEEE.
Resumo:
We report on the experimental characterization of a single crystal silicon square-plate microresonator. The resonator is excited in the square wine glass (SWG) mode at a mechanical resonance frequency of 2.065 MHz. The resonator displays quality factor of 9660 in air and an ultra-high quality factor of Q = 4.05 × 106 in 12 mtorr vacuum. The SWG mode may be described as a square plate that contracts along one axis in the fabrication plane, while simultaneously extending along an orthogonal axis in the same plane. The resonant structure is addressed in a 2-terminal configuration by utilizing equal and opposite drive polarities on surrounding capacitor electrodes, thereby decreasing the motional resistance of the resonator. The resonant micromechanical device has been fabricated in a commercial silicon-on-insulator process through the MEMSCAP foundry utilising a minimum electrostatic gap of 2 μm. © 2008 IEEE.
Resumo:
It becomes increasingly difficult to make continuous metal lines with well defined thickness and edges by the lift-off technique as the line width is decreased. We describe in this paper a technique in which the combination of high resolution electron beam lithography and ionized cluster beam (ICB) deposition has enabled very high quality gold lines ({all equal to}25nm wide) to be obtained on thick single crystal silicon substrates. © 1990.
Resumo:
Mn+ ions were implanted into n-type Ge(111) single crystal at room temperature at an energy of 100 keV with a dose of 3 x 1016 cm-2. Subsequent annealing was performed on the samples at 400 °C and 600 °C in a flowing nitrogen atmosphere. The magnetic properties of the samples have been investigated by alternating gradient magnetometer at room temperature. The compositional properties of the annealed samples were studied by Auger electron spectroscopy and the structural properties were analyzed by X-ray diffraction measurements. Magnetization measurements reveal room-temperature ferromagnetism for the annealed samples. The magnetic analysis supported by compositional and structural properties indicates that forming the diluted magnetic semiconductor (DMS) MnxGe1-x after annealing may account for the ferromagnetic behavior in the annealed samples.
Resumo:
Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.
Resumo:
Heavily iron-implanted silicon was prepared by mass-analyzed low-energy dual ion beam deposition technique. Auger electron spectroscopy depth profiles indicate that iron ions are shallowly implanted into the single-crystal silicon substrate and formed 35 nm thick FexSi films. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is partially restored after as-implanted sample was annealed at 400degreesC. There are no new phases formed. Carrier concentration depth profile of annealed sample was measured by Electrochemical C-V method and indicated that FexSi film shows n-type conductivity while silicon substrate is p-type. The p-n junction is formed between FexSi film and silicon substrate showing rectifying effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine a new basic state of long axisymmetric liquid zone, subjected to axial temperature gradients which induce steady viscous flow driven by thermocapillarity. Axial velocity 1/4S-1/2R(B) of liquid zone connects pulling velocity of single crystal. The stability of liquid zone with pulling velocity 1/4S-1/2R(B) to small axisymmetric disturbance is examined The eigenvalue problems on the stability are derived. A special case (eta = 0) is discussed.
Resumo:
A finite element algorithm is used to analyze the process of floating zone crystal growth under microgravity. The effect of phase change convection coupled with surface tension convection is considered. The results show that the rate of crystal growth is very important. The single-crystal-melt interface is steeper than the feed-melt interface during the process of crystal growth. When the rate exceeds a critical value, the Marangoni vortex near the feed-melt interface will become so large that a secondary vortex will exist.
Resumo:
采用低雷诺数k-ε模型,计算分析了Cz法大型砷化镓单晶生长中熔体 内的热量、动量输支特性。结果表明:适当的坩埚旋转能有效抑制晶体旋转产生的对流和浮力对流,增长晶体转速能使晶体/熔体界面附近等温线更加平直,适当的坩埚、晶体转速匹配能够抑止晶体/熔体界面附近的温度波动,热毛细力对强烈熔体流动的影响可以忽略不计,但对较弱的熔体流动影响较大。文中还给出了较为适宜的坩埚、晶体转速匹配方式。研究结果为生长高质量大型砷化镓单晶提供了有重要价值的数值依据。
Resumo:
Resumo:
Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.
Resumo:
The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.