985 resultados para SIGNALING COMPLEX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. METHODS ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. RESULTS ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. CONCLUSIONS ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inflammatory prostaglandin E2 (PGE2) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE2-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE2 EP4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE2-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich-Wasserstein distance of the Fekete points to its limiting measure. The sampling and interpolation arrays on line bundles are a subject of independent interest, and we provide necessary density conditions through the classical approach of Landau, that in this context measures the local dimension of the space of sections of the line bundle. We obtain a complete geometric characterization of sampling and interpolation arrays in the case of compact manifolds of dimension one, and we prove that there are no arrays of both sampling and interpolation in the more general setting of semipositive line bundles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep and wakefulness are complex behaviors that are influenced by many genetic and environmental factors, which are beginning to be discovered. The contribution of genetic components to sleep disorders is also increasingly recognized as important. Point mutations in the prion protein, period 2, and the prepro-hypocretin/orexin gene have been found as the cause of a few sleep disorders but the possibility that other gene defects may contribute to the pathophysiology of major sleep disorders is worth in-depth investigations. However, single gene disorders are rare and most common disorders are complex in terms of their genetic susceptibility, environmental effects, gene-gene, and gene-environment interactions. We review here the current progress in the genetics of normal and pathological sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor angiogenesis is an essential step in tumor progression and metastasis formation. Suppression of tumor angiogenesis results in the inhibition of tumor growth. Recent evidence indicates that vascular integrins, in particular alpha V beta 3, are important regulators of angiogenesis, including tumor angiogenesis. Integrin alpha V beta 3 antagonists, such as blocking antibodies or peptides, suppress tumor angiogenesis and tumor progression in many preclinical tumor models. The potential therapeutic efficacy of extracellular integrin antagonists in human cancer is currently being tested in clinical trials. Selective disruption of the tumor vasculature by high doses of tumor necrosis factor (TNF) and interferon gamma (IFN-gamma), and the antiangiogenic activity of nonsteroidal anti-inflammatory drugs are associated with the suppression of integrin alpha V beta 3 function and signaling in endothelial cells. Furthermore, expression of isolated integrin cytoplasmic domains disrupts integrin-dependent adhesion, resulting in endothelial cell detachment and apoptosis. These results confirm the critical role of vascular integrins in promoting endothelial cell survival and angiogenesis and suggest that intracellular targeting of integrin function and signaling may be an alternative strategy to extracellular integrin antagonists for the therapeutic inhibition of tumor angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma progression is associated with changes in adhesion receptor expression, in particular upregulation of N-cadherin which promotes melanoma cell survival and invasion. Plasma membrane lipid rafts contribute to the compartmentalization of signaling complexes thereby regulating their function, but how they may affect the properties of adhesion molecules remains elusive. In this study, we addressed the question whether lipid rafts in melanoma cells may contribute to the compartmentalization of N-cadherin. We show that a fraction of N-cadherin in a complex with catenins is associated with cholesterol/sphingolipid-rich membrane microdomains in aggressive melanoma cells in vitro and experimental melanomas in vivo. Partitioning of N-cadherin in membrane rafts is not modulated by growth factors and signaling pathways relevant to melanoma progression, is not necessary for cell-cell junctions' establishment or maintenance, and is not affected by cell-cell junctions' and actin cytoskeleton disruption. These results reveal that two independent pools of N-cadherin exist on melanoma cell surface: one pool is independent of lipid rafts and is engaged in cell-cell junctions, while a second pool is localized in membrane rafts and does not participate in cell-cell adhesions. Targeting to membrane rafts may represent a previously unrecognized mechanism regulating N-cadherin function in melanoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Breast cancer incidence rates have increased over the past hundred years, in particular, in Western industrial countries and they continue to rise worldwide. Breast cancer risk has been linked to life exposure to endogenous and exogenous estrogens, and there is increasing concern that exposure to endocrine disruptors which are increasingly accumulating in our environment may also have a role. Using the mouse as model, I have analyzed the physiological role of estrogen signaling in mammary gland development. I have shown that estrogen signaling through the estrogen receptor alpha (ERα) in the mammary epithelium is required for ductal morphogenesis during puberty. Moreover, I have demonstrated that estrogens induce proliferation of mammary epithelial cells through a paracrine mechanism. The presence of estrogen signaling is essential cell intrinsically via ERα or ERβ for the terminal differentiation into milk secreting cells during pregnancy. Furthermore, I have examined how perinatal exposure to the estrogenic plasticizer bisphenol A (BPA) found ubiquitously in consumer goods such as baby bottles formula and beverage containers affects the normal mammary gland development and possibly predispose the mammary gland to tumorigenesis. I have found that C57b16 mice that were exposed, via their drinking water, to several BPA doses ranging from 0.025µg/kg/day to 250µg/kg/day exhibits delayed terminal end bud formation and consequently the ductal outgrowth. Later in life, the mice that were exposed in utero to BPA displayed an increased number of mammary epithelial cells. Acute exposure of 3-week-old mice to BPA can alter gene expression levels of an important estrogen target gene, amphiregulin. Taken together these data are compatible with a scenario in which perinatal BPA exposure may alter mammary gland development by affecting developmental signaling pathways. Résumé : Les taux d'incidence des cancers du sein ont augmenté au cours des cent dernières années en particulier dans les pays industriels occidentaux et ils continuent d'augmenter dans le monde entier. Le risque du cancer du sein a été corrélé à l'exposition au cours de la vie aux oestrogènes endogènes et exogènes. Il y a une préoccupation croissante concernant l'exposition aux perturbateurs endocriniens qui ne cessent de s'accumulent dans notre environnement et qui peuvent également avoir un rôle dans l'augmentation des cancers du sein. En utilisant le modèle de souris, j'ai analysé le rôle physiologique de la voie de signalisation à l'oestrogène dans le développement mammaire. J'ai prouvé que l'oestrogène par l'intermédiaire de son récepteur alpha (ERα) est indispensable dans l'épithélium pour la morphogénèse du système canalaire pendant la puberté. De plus, j'ai démontré que les oestrogènes induisent la prolifération des cellules épithéliales mammaires par un mécanisme paracrine. La présence de la voie de signalisation à l'oestrogène est essentielle de manière intrinsèque à la cellule par l'intermédiaire d'ERα ou ERβ pour la différentiation terminale des cellules épithéliales en cellules sécrétrices de lait pendant la grossesse. En outre, j'ai examiné comment l'exposition périnatale au bisphénol A (BPA), un plastifiant présentant des propriétés ostrogéniques et omniprésent dans divers produits d'usage courant tels que les biberons des bébés et les récipients en plastique, affecte le développement de la glande mammaire et prédispose probablement celle-ci à la tumorigénèse. J'ai constaté que l'exposition périnatale à BPA retarde la formation des bourgeons terminaux et par conséquent la croissance du système canalaire. Plus tard dans la vie, les souris qui ont été exposées dans l'utérus au BPA ont montré un plus grand nombre de cellules épithéliales mammaires. L'exposition aiguë de souris âgées de 3 semaines au BPA perturbe le niveau d'expression d'un gène cible important de l'oestrogène, l'amphiregulin. Ces données sont compatibles avec un scénario dans lequel l'exposition périnatale au BPA peut changer le développement de la glande mammaire en affectant des voies de signalisation développementales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raspas Complex (Ecuador) contains one of the few eclogitic bodies in the northern Andes. It consists of metaperidotites, eclogites, and metapelites. The latter display three assemblages: (i) garnet + chloritoid + kyanite, (ii) garnet + chloritoid and (iii) garnet + chlorite, in all cases with quartz and muscovite in addition. The growth of these assemblages was coeval with the main ductile deformation, and was followed by minor reequilibration (chlorite growth in garnet + chloritoid samples and chloritoid + quartz aggregates replacing garnet and kyanite in garnet + chloritoid + kyanite samples). Detailed microprobe analyses show increasing magnesian compositions for garnet (from core to rim) and chloritoid (inclusions within garnet compared to matrix grains) in kyanite-bearing samples. The above data are interpreted in the framework of the KFMASH system. Reaction progress along the divariant reaction Cld = Grt + Ky explains the change in chemistry of coexisting phases. The divariant Grt-Cld-Ky assemblage has a narrow stability field, and the P-T conditions are estimated at about 20 kbar, 550-600degreesC. Decompression, recorded by chloritoid-quartz pseudomorphs of garnet, probably occurred as temperature decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitellogenin genes are expressed specifically in the liver of female oviparous vertebrates under the strict control of estrogen. To explain this tissue-specific expression, we performed a detailed analysis of the Xenopus laevis vitellogenin gene B1 promoter by DNase I footprinting and gel mobility-shift assays. We characterized five binding sites for the ubiquitous factor CTF/NF-I. Two of these sites are close to the TATA-box, whereas the others are located on both sides of the estrogen responsive unit formed by two imperfect estrogen response elements. Moreover two liver-enriched factors, C/EBP and HNF3, were found to interact with multiple closely spaced proximal promoter elements in the first 100 base pairs upstream of the TATA-box. To confirm the physiological significance of this in vitro analysis, in vivo DNase I footprinting experiments were carried out using the ligation-mediated polymerase chain reaction technique. The various cis-elements characterized in vitro as binding sites for known transcription factors and more particularly for liver-enriched transcription factors are efficiently recognized in vivo as well, suggesting that they play an important role in the control of the liver-specific vitellogenin gene B1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most aggressive brain tumor that, by virtue of its resistance to chemotherapy and radiotherapy, is currently incurable. Identification of molecules whose targeting may eliminate GBM cells and/or sensitize glioblastoma cells to cytotoxic drugs is therefore urgently needed. CD44 is a major cell surface hyaluronan receptor and cancer stem cell marker that has been implicated in the progression of a variety of cancer types. However, the major downstream signaling pathways that mediate its protumor effects and the role of CD44 in the progression and chemoresponse of GBM have not been established. Here we show that CD44 is upregulated in GBM and that its depletion blocks GBM growth and sensitizes GBM cells to cytotoxic drugs in vivo. Consistent with this observation, CD44 antagonists potently inhibit glioma growth in preclinical mouse models. We provide the first evidence that CD44 functions upstream of the mammalian Hippo signaling pathway and that CD44 promotes tumor cell resistance to reactive oxygen species-induced and cytotoxic agent-induced stress by attenuating activation of the Hippo signaling pathway. Together, our results identify CD44 as a prime therapeutic target for GBM, establish potent antiglioma efficacy of CD44 antagonists, uncover a novel CD44 signaling pathway, and provide a first mechanistic explanation as to how upregulation of CD44 may constitute a key event in leading to cancer cell resistance to stresses of different origins. Finally, our results provide a rational explanation for the observation that functional inhibition of CD44 augments the efficacy of chemotherapy and radiation therapy.