982 resultados para SIGNAL-TRANSDUCTION PATHWAYS
Resumo:
The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes--including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis--underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression.
Resumo:
The identification and description of signal transduction molecules and mechanisms are essential to elucidate Schistosoma mansoni host-parasite interactions and parasite biology. This mini review focuses on recent advancements in the study of signalling molecules and transduction mechanisms in S. mansoni, drawing special attention to the recently identified and characterised protein tyrosine kinases of S. mansoni.
Resumo:
Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses
Resumo:
The main regulators of leukocyte trafficking during inflammatory responses are chemokines. However, another class of recently identified chemotactic agents is extracellular cyclophilins, the proteins mostly known as receptors for the immunosuppressive drug, cyclosporine A. Cyclophilins can induce leukocyte chemotaxis in vitro and have been detected at elevated levels in inflamed tissues, suggesting that they might contribute to inflammatory responses. We recently identified CD147 as the main signaling receptor for cyclophilin A. In the current study we examined the contribution of cyclophilin-CD147 interactions to inflammatory responses in vivo using a mouse model of acute lung injury. Blocking cyclophilin-CD147 interactions by targeting CD147 (using anti-CD147 Ab) or cyclophilin (using nonimmunosuppressive cyclosporine A analog) reduced tissue neutrophilia by up to 50%, with a concurrent decrease in tissue pathology. These findings are the first to demonstrate the significant contribution of cyclophilins to inflammatory responses and provide a potentially novel approach for reducing inflammation-mediated diseases.
Resumo:
The idea that a receptor can produce signalling without agonist intervention and that several antagonists can be 'active' in repressing such spontaneous activity is contained in the concept of ligand-induced conformational changes. Yet, this idea was neglected by pharmacologists for many years. In this article, we review the events that brought inverse agonism and constitutive activity to general attention and made this phenomenon a topic of current research. We also suggest a classification of antagonists based on the cooperativity that links their primary site of interaction with other functional domains of the receptor.
Resumo:
The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.
Resumo:
alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.
Resumo:
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.
Resumo:
Azithromycin at clinically relevant doses does not inhibit planktonic growth of the opportunistic pathogen Pseudomonas aeruginosa but causes markedly reduced formation of biofilms and quorum-sensing-regulated extracellular virulence factors. In the Gac/Rsm signal transduction pathway, which acts upstream of the quorum-sensing machinery in P. aeruginosa, the GacA-dependent untranslated small RNAs RsmY and RsmZ are key regulatory elements. As azithromycin treatment and mutational inactivation of gacA have strikingly similar phenotypic consequences, the effect of azithromycin on rsmY and rsmZ expression was investigated. In planktonically growing cells, the antibiotic strongly inhibited the expression of both small RNA genes but did not affect the expression of the housekeeping gene proC. The azithromycin treatment resulted in reduced expression of gacA and rsmA, which are known positive regulators of rsmY and rsmZ, and of the PA0588-PA0584 gene cluster, which was discovered as a novel positive regulatory element involved in rsmY and rsmZ expression. Deletion of this cluster resulted in diminished ability of P. aeruginosa to produce pyocyanin and to swarm. The results of this study indicate that azithromycin inhibits rsmY and rsmZ transcription indirectly by lowering the expression of positive regulators of these small RNA genes.
Resumo:
Leptin, the 16,000 molecular weight protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta, in which it was found to be expressed. In the present work, we have found that recombinant human chorionic gonadotropin (hCG) added to BeWo choriocarcinoma cell line showed a stimulatory effect on endogenous leptin expression, when analyzed by Western blot. This effect was time and dose dependent. Maximal effect was achieved at hCG 100 IU/ml. Moreover, hCG treatment enhanced leptin promoter activity up to 12.9 times, evaluated by transient transfection with a plasmid construction containing different promoter regions and the reporter gene luciferase. This effect was dose dependent and evidenced with all the promoter regions analyzed, regardless of length. Similar results were obtained with placental explants, thus indicating physiological relevance. Because hCG signal transduction usually involves cAMP signaling, this pathway was analyzed. Contrarily, we found that dibutyryl cAMP counteracted hCG effect on leptin expression. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor cAMP response element binding protein repressed leptin expression. Thereafter we determined that hCG effect could be partially blocked by pharmacologic inhibition of MAPK pathway with 50 microM PD98059 but not by the inhibition of the phosphatidylinositol 3-kinase pathway with 0.1 microm wortmannin. Moreover, hCG treatment promoted MAPK kinase and ERK1/ERK2 phosphorylation in placental cells. Finally, cotransfection with a dominant-negative mutant of MAPK blocked the hCG-mediated activation of leptin expression. In conclusion, we provide some evidence suggesting that hCG induces leptin expression in trophoblastic cells probably involving the MAPK signal transduction pathway.
Resumo:
The TNF family member BAFF is a fundamental survival factor for B cells. BAFF binds to three receptors, only one of which, BAFF-R, does not cross-react with the BAFF-related ligand APRIL. The survival function of BAFF on B cells is mediated mainly by BAFF-R and is particularly effective in transitional B cells. BAFF depletion leads to a considerable decrease in mature B cells, without apparent effect on B cell genesis. Consistently, BAFF overexpression results in an expanded B cell compartment and autoimmunity in mice. Elevated amounts of BAFF can be found in the serum of patients suffering from autoimmune diseases. The BAFF system is a promising target for the treatment of autoimmune diseases.
Resumo:
Ion channel proteins are regulated by different types of posttranslational modifications. The focus of this review is the regulation of voltage-gated sodium channels (Navs) upon their ubiquitylation. The amiloride-sensitive epithelial sodium channel (ENaC) was the first ion channel shown to be regulated upon ubiquitylation. This modification results from the binding of ubiquitin ligase from the Nedd4 family to a protein-protein interaction domain, known as the PY motif, in the ENaC subunits. Many of the Navs have similar PY motifs, which have been demonstrated to be targets of Nedd4-dependent ubiquitylation, tagging them for internalization from the cell surface. The role of Nedd4-dependent regulation of the Nav membrane density in physiology and disease remains poorly understood. Two recent studies have provided evidence that Nedd4-2 is downregulated in dorsal root ganglion (DRG) neurons in both rat and mouse models of nerve injury-induced neuropathic pain. Using two different mouse models, one with a specific knockout of Nedd4-2 in sensory neurons and another where Nedd4-2 was overexpressed with the use of viral vectors, it was demonstrated that the neuropathy-linked neuronal hyperexcitability was the result of Nav1.7 and Nav1.8 overexpression due to Nedd4-2 downregulation. These studies provided the first in vivo evidence of the role of Nedd4-2-dependent regulation of Nav channels in a disease state. This ubiquitylation pathway may be involved in the development of symptoms and diseases linked to Nav-dependent hyperexcitability, such as pain, cardiac arrhythmias, epilepsy, migraine, and myotonias.