976 resultados para S.cerevisiae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of honey oligosaccharides on the growth of fecal bacteria was studied using an in vitro fermentation system. Prior to treatment, glucose and fructose (31.73 and 21.41 g/100 g of product, respectively) present in honey, which would be digested in the upper gut, were removed to avoid any influence on bacterial populations in the fermentations. Nanofiltration, yeast (Saccharomyces cerevisiae) treatment, and adsorption onto activated charcoal were used to remove monosaccharides. Prebiotic (microbial fermentation) activities of the three honey oligosaccharide fractions and the honey sample were studied and compared with fructooligosaccharide (FOS), using 1% (w/v) fecal bacteria in an in vitro fermentation system (10 mg of carbohydrate, 1.0 mL of basal medium). A prebiotic index (PI) was calculated for each carbohydrate source. Honey oligosaccharides seem to present potential prebiotic activity (PI values between 3.38 and 4.24), increasing the populations of bifidobacteria and lactobacilli, although not to the levels of FOS (PI of 6.89).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM 1-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage: concentrate ratio on a dry matter (DM) basis. There were four diets (T-1 to T-4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T, (no supplement), T-2 (SS), T-3 (SY) and T-4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112 blood and milk Se values for T-1 to T-4 were 177, 208, 248 and 279 +/- 6.6 and 24, 38, 57 and 72 +/- 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112 replacing SS (T-2) with SY (T-3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157ng Se/g dried sample as the inclusion rate of SY increased further (T-4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112 milk from T-1, T-2 and T-3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T-2) with SY (T-3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. Methods and Results: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. Conclusions: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. Significance and Impact of the Study: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of prebiotic alpha- and beta-galactooligosaccharides (GOS) using the whole cells of Bifidobacterium bifidum NCIMB 41171 was investigated. Determination of alpha- and beta-galactosidase activities showed them to be at 3 and 205 g(-1) of freeze dried biomass, respectively, and they increased to 5 and 344 U g(-1), respectively, when cells were treated with toluene. Starting with 450-500 mg mL(-1) lactose, maximum GOS concentrations were observed at 80-85% lactose conversions and the mixtures contained oligosaccharides (with a degree of polymerisation >= 3) at 77-109 mg mL(-1) and trans-galactosylated disaccharides between 85-115 mg mL(-1). The GOS yield values varied between 36% and 43%. An alpha-linked disaccharide was detected and its presence was confirmed by gas chromatography mass spectroscopy. Cells were re-used up to 8 times without changes in reaction times or the substrate conversions to GOS. Oligosaccharide synthesis was not inhibited by the presence of glucose or galactose. The mixtures were successfully purified from glucose (92% of glucose removed) by fermentation with Saccharomyces cerevisiae with no losses in the oligosaccharide content and only a small decrease on the galactose. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Culex pipiens is the most cosmopolitan mosquito of the Pipiens Assemblage. By studying the nature of interactions between this species and microorganisms common to its breeding environment we can unravel important pitfalls encountered during development. We tested the survival rate of larval stages, pupae and adults of a Cx. pipiens colony exposed to a variety of microorganisms in laboratory conditions and assessed the transmission to offspring (F1) by those organisms that secured development up to adulthood. Three complementary experiments were designed to: 1) explore the nutritional value of yeasts and other microorganisms during Cx. pipiens development; 2) elucidate the transstadial transmission of yeast to the host offspring; and 3) to examine the relevance of all these microorganisms in female choice for oviposition-substratum. The yeast Saccharomyces cerevisiae proved to be the most nutritional diet, but despite showing the highest survival rates, vertical transmission to F1 was never confirmed. In addition, during the oviposition trials, none of the gravid females was attracted to the yeast substratum. Notably, the two native bacterial strains, Klebsiella sp. and Aeromonas sp., were the preferred oviposition media, the same two bacteria that managed to feed neonates until molting into 2nd instar larvae. Our results not only suggest that Klebsiella sp. or Aeromonas sp. serve as attractants for oviposition habitat selection, but also nurture the most fragile instar, L1, to assure molting into a more resilient stage, L2, while yeast proves to be the most supportive diet for completing development. These experiments unearthed survival traits that might be considered in the future development of strategies of Cx. pipiens control. These studies can be extended to other members of the Pipiens Assemblage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein`s structure was determined at 1.6 angstrom resolution and revealed a new topology for ACBP, containing five a-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The National Alcohol Program - ProAlcool, created by the government of Brazil in 1975 resulted less dependency on fossil fuels. The addition of 25% ethanol to gasoline reduced the import of 550 million barrels oil and also reduced the emission CO(2) by 110 million tons. Today, 44% of the Brazilian energy matrix is renewable and 13.5% is derived from sugarcane. Brazil has a land area of 851 million hectares, of which 54% are preserved, including the Amazon forest (350 million hectares). From the land available for agriculture (340 million hectares), only 0.9% is occupied by sugarcane as energy crop, showing a great expansion potential. Studies have shown that in the coming years, ethanol yield per hectare of sugarcane, which presently is 6000 L/ha, could reach 10,000 L/ha, if 50% of the produced bagasse would be converted to ethanol. This article describes the efforts of different Brazilian institutions and research groups on second generation bioethanol production, especially from sugarcane bagasse. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of human actions, biomarkers have become important to detect and mitigate pollution. This study showed that crystalloids can be a biomarker for analyses of low levels of water-soluble fractions of oil (WSF). Antarctic sea urchins (Sterechinus neumayeri) from regions free of pollution were exposed for 2, 5, 10 and 15 days at different levels of WSF (0.4, 0.8 and 1.2 ppm). No significant differences were observed in the phagocytic rates or the germicide capacity for the yeast Saccharomyces cerevisiae; however, there was a significant increase in the quantity of intranuclear iron crystalloids in phagocytic amoebocytes of urchins exposed to higher levels of WSF. This study characterizes histological alterations in crystalloids of S. neumayeri that could be used as a biomarker for oil contaminants, with a simple and inexpensive protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. One of the early stages of pre-rRNA processing includes formation of the two intermediate complexes pre-40S and pre-60S, which then form the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, ribosomal proteins and processing factors. The yeast nucleolar protein Nop53p has previously been identified in the pre-60S complex and shown to affect pre-rRNA processing by directly binding to 5.8S rRNA, and to interact with Nop17p and Nip7p, which are also involved in this process. Here we show that Nop53p binds 5.8S rRNA co-transcriptionally through its N-terminal region, and that this protein portion can also partially complement growth of the conditional mutant strain Delta nop53/GAL:NOP53. Nop53p interacts with Rrp6p and activates the exosome in vitro. These results indicate that Nop53p may recruit the exosome to 7S pre-rRNA for processing. Consistent with this observation and similar to the observed in exosome mutants, depletion of Nop53p leads to accumulation of polyadenylated pre-rRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.