979 resultados para Runge Lenz Three Body Hydrogen Molecular Ion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study. A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating. To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test. Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed. The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions. The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The matrix metalloproteases (MMPs) and the ADAMs (A Disintegrin And Metalloprotease domain) are proteolytic enzyme families containing a catalytic zinc ion, that are implicated in a variety of normal and pathological processes involving tissue remodeling and cancer. Synthetic MMP inhibitors have been designed for applications in pathological situations. However, a greater understanding of substrate binding and the catalytic mechanism is required so that more effective and selective inhibitors may be developed for both experimental and clinical purposes. By modeling a natural substrate spanning P4-P4‘ in complex with the catalytic domains, we aim to compare substrate-specificities between Stromelysin-1 (MMP-3), ADAM-9 and ADAM–10, with the aid of molecular dynamics simulations. Our results show that the substrate retains a favourable antiparallel beta-sheet conformation on the P-side in addition to the well-known orientation of the P'-region of the scissile bond, and that the primary substrate selectivity is dominated by the sidechains in the S1' pocket and the S2/S3 region. ADAM-9 has a hydrophobic residue as the central determinant in the S1' pocket, while ADAM-10 has an amphiphilic residue, which suggests a different primary specificity. The S2/S3 pocket is largely hydrophobic in all three enzymes. Inspired by our molecular dynamics calculations and supported by a large body of literature, we propose a novel, hypothetical, catalytic mechanism where the Zn-ion polarizes the oxygens from the catalytic glutamate to form a nucleophile, leading to a tetrahedral oxyanion anhydride transition state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The damage characteristics of polyethylene terephthalate (PET) have been studied under bombardment by C60+, Au3+ and Au+ primary ions. The observed damage cross-sections for the three ion beams are not dramatically different. The secondary ion yields however were significantly enhanced by the polyatomic primary ions where the secondary ion yield of the [M + H]+ is on average 5× higher for C60+ than Au3+ and 8× higher for Au3+ than Au+. Damage accumulates under Au+ and Au3+ bombardment while C60+ bombardment shows a lack of damage accumulation throughout the depth profile of the PET thick film up to an ion dose of 1 ~ 1015 ions cm−2. These properties of C60+ bombardment suggest that the primary ion will be a useful molecular depth profiling tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic liquids comprised of tetradecyltrihexyl- and tetrabutyl- phosphonium cations paired with chloride or sulfonyl amide anions exhibit properties that reflect strong ion association, including comparatively low viscosity as well as a degree of volatility, and hence exemplify an interesting intermediate state between true ionic and true molecular liquids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Doping of lithium salts and acids into the plastic crystal phase of succinonitrile has shown for the first time of the possibility of creating solid state electrolytes based on plastic crystalline solvents where the matrix itself is neutral and hence not intrinsically conductive. These materials illustrate the concept of a solid state electrolyte solvent. Room temperature conductivities up to 3.4×10−4 S cm−1 were obtained with 5 wt.% lithium bis(trifluoromethanesulfonylamide) in succinonitrile. Pulsed field gradient NMR measurements indicate that both cation and anion are mobile in this lattice. Proton conductivity was also observed when methane sulfonic acid or glacial acetic acid was used as dopants, however, the conductivity in these systems is limited by the poor dissociating ability of these acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model systems of sodium iodide dissolved in dimethyl ether or 1,2-dimethoxyethane (glyme) were studied in order to investigate the structural and dynamic properties of ionic solutions in small and polymeric ethers. Full molecular dynamics simulations were performed at a range of different salt concentrations. An algorithm was designed which assigns ions to clusters and then calculates all the terms which contribute to ionic conductivity. In dilute solutions, free ions are the most common ionic species, followed by ion pairs. As the concentration increases, pairs become the most common species, with significant concentrations of clusters with 3 through 6 ions. Changing the solvent from dimethyl ether to glyme significantly decreases the ion clustering due to the chelate effect in which the two oxygens on a solvent stabilize an associated cation. The conductivity in stable systems is shown to be primarily the result of the movement of free ions and the relative movement of ions within neutral pairs. The Nernst-Einstein relation, commonly used in the discussion of polymer electrolytes, is shown to be inadequate to quantitatively describe conductivity in the model systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P1,2,2,4][PF6]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid–solid phase transitions and a highly “plastic” and conductive final solid phase in which the conductivity reaches 10–3 S cm–1. The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the 1H, 19F, and 31P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P1,2,2,4][PF6]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents morphological and molecular data on hookworms from the Australian fur seal Arctocephalus pusillus doriferus (Schreber) currently identified in Australian waters as Uncinaria hamiltoni Baylis, 1933. Additional specimens from the Australian sea lion Neophoca cinerea (Péron) and the New Zealand fur seal Arctocephalus forsteri (Lesson) from Australia, and the Southern elephant seal Mirounga leonina (Linnaeus) from Antarctica, were included. Using the internal transcribed spacer (ITS), hookworms from A. p. doriferus, N. cinerea and A. forsteri were found to be genetically similar but distinct from Uncinaria spp. found in M. leonina from Antarctica, as well as from Zalophus californianus (Lesson) and Callorhinus ursinus (Linnaeus) from California. Few morphological differences were detected between these taxa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predators exert strong selection pressures on their prey. Prey would therefore benefit by adjusting their behaviour to the risk of predation, while predators conversely would benefit from adjusting their behaviour to that of their prey. Extravagant ornamentation has evolved to attract mates and/or successfully compete with conspecifics of the same sex to secure high mating success, even if that occurs at a cost of increased risk of predation. Thus, sexually dichromatic species may be more susceptible to predation than sexually monochromatic species, and the presence of compensation is indicative of such species being more vulnerable. If extravagant ornamentation is costly in terms of predation risk, then we should expect sexually dichromatic species to have longer flight initiation distances (FID) than sexually monochromatic species. If ornamentation is acquired as a handicap with only individuals in prime condition being able to display with the smallest viability cost, we should expect sexually dichromatic individuals to have shorter FID than sexually monochromatic individuals. Such differences among individuals should, on an evolutionary time scale, translate into differences in FID being related to differences in sexual dichromatism among species. We investigated the relationship between FID and sexual dichromatism in phylogenetic analyses, while accounting for effects of continent (Australia, North America, and Europe), body mass, the interaction between sexual dichromatism and body mass and the interaction between sexual dichromatism and continent. In an analysis of 447 species we found shorter FID in sexually dichromatic than in sexually monochromatic species (consistent with the handicap hypothesis because sexually dichromatic species took greater risks), especially so at large body size. FID differed among continents and the relative difference in FID between sexually monochromatic and sexually dichromatic species was larger in Europe than in Australia and North America. These differences among continents may be attributed to latitudinal effects of predation. These findings are important for current ideas about the evolution of secondary sexual characters because they imply covarying continental differences in predation, especially for large bodied sexually dichromatic species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Indium oxide nanoparticles were synthesised by using a facile and scalable strategy. The as-prepared nanoparticles (20-40 nm) were in situ and homogeneously distributed in a three-dimensional (3D) graphene architecture subsequently during the fabrication process. The obtained nanocomposite acts as a high capacity anode material for lithium-ion batteries and demonstrates good cycle stability. A drastically enhanced capacity of 750 mA h g-1 in comparison with that of bare In2O3 nanoparticles can be maintained after 100 cycles, along with an improved high rate performance (210 mA h g-1 at 1 A g-1 and 120 mA h g-1 at 2 A g-1). The excellent performance is linked with the indium oxide nanoparticles and the unique 3D interconnected porous graphene structure. The highly conductive and porous 3D graphene structure greatly enhances the performance of lithium-ion batteries by protecting the nanoparticles from the electrolyte, stabilizing the nanoparticles during cycles and buffering the volume expansion upon lithium insertion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we investigated the effect of polymer architecture on the ion dynamics and local structure to understand the factors that might lead to the design of highly conductive and mechanically robust polyelectrolytes. Molecular dynamic simulations were undertaken on the sodium poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl) imide] P(STFSINa) homopolymer and its copolymers with either ether or styrene spacer groups to investigate the spacer length and polarity dependence of Na-ion transport. Using a scaled charge model, we observed a continuous ion aggregate network in the homopolymer, which facilitates the fast ion dynamics despite the rigid polymer matrix. The longest spacer groups disrupt this percolating ionic network differently, with the ether group being more disruptive than the styrene group, and leading to more discrete ionic aggregates. The copolymer with the ether spacer was also found to result in an alternative Na-ion diffusion mechanism.