1000 resultados para Rotació molecular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzimidazole derivatives are well known for their antibacterial, antiviral, anticonvulsant, antihistaminic, anthelmintic and antidepressant activities. Benzimidazole's unique base-selective DNA recognition property has been studied widely. However, most of the early benzimidazole systems have been targeted towards the binding of duplex DNA. Here we have shown the evolution and progress of the design and synthesis of new benzimidazole systems towards selective recognition of the double-stranded DNA first. Then in order to achieve selective recognition of the G-quadruplex DNA and utilize their potential as future anti-cancer drug candidates, we have demonstrated their selective cytotoxicity towards the cancer cells and potent telomerase inhibition ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion of pentane isomers in zeolites NaX has been investigated using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and molecular dynamics (MD) techniques respectively. Temperature and concentration dependence of diffusivities have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of Karger and Pfeifer 1]. NMR diffusivities of the isomers exhibit the order D(n-pentane) > D(isopentane) > D(neopentane). The results from MD suggest that the diffusivities of the isomers follow the order D(n-pentane) < D(isopentane) < D(neopentane). The activation energies from NMR show E-a(n-pentane) < E-a(isopentane) < E-a(neopentane) whereas those from MD suggest the order E-a(n-pentane) > (isopentane) > E-a(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between diffusivities estimated by NMR and MD are attributed to the longer time and length scales sampled by the NMR technique, as compared to MD. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plants, calcium-dependent protein kinases (CDPKs) are key intermediates in calcium-mediated signaling that couple changes in Ca2+ levels to a specific response. In the present study, we report the high-level soluble expression of calcium-dependent protein kinase1 from Cicer arietinum (CaCDPK1) in Escherichia coli. The expression of soluble CaCDPK1 was temperature dependent with a yield of 3-4 mg/l of bacterial culture. CaCDPK1 expressed as histidine-tag fusion protein was purified using Ni-NTA affinity chromatography till homogeneity. The recombinant CaCDPK1 protein exhibited both calcium-dependent autophosphorylation and substrate phosphorylation activities with a V (max) and K (m) value of 13.2 nmol/min/mg and 34.3 mu M, respectively, for histone III-S as substrate. Maximum autophosphorylation was seen only in the presence of calcium. Optimum temperature for autophosphorylation was found to be 37 A degrees C. The recombinant protein showed optimum pH range of 6-9. The role of autophosphorylation in substrate phosphorylation was investigated using histone III-S as exogenous substrate. Our results show that autophosphorylation happens before substrate phosphorylation and it happens via intra-molecular mechanism as the activity linearly depends on enzyme concentrations. Autophosphorylation enhances the kinase activity and reduces the lag phase of activation, and CaCDPK1 can utilize both ATP and GTP as phosphodonor but ATP is preferred than GTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with amixture of tri- and tetra-imidazole donors led to the self-sorting of a Pd-7 molecular boat with an internal nanocavity, which catalyses the Knoevenagel condensation of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid and Meldrum's acid in aqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blending of perfluorinated bile ester derivatives with the gelator 2,3-didecyloxyanthracene (DDOA) yields a new class of hybrid organo- and aerogels displaying a combination of optical and mechanical properties that differ from those of pure gels. Indeed, the nanofibers constituting the hybrid organogels emit polarized blue light and display dichroic near-UV absorption via the achiral DDOA molecules, thanks to their association with a chiral bile ester. Moreover, the thermal stability and the mechanical yield stress of the mixed organogels in DMSO are enhanced for blends of DDOA with the deoxycholic gelator (DC11) having a C-11 chain, as compared to the pure components' gels. When the chain length of the ester is increased to C-13 (DC13) a novel compound for aerogel formation directly in scCO(2) is obtained under the studied conditions. A mixture of this compound with DDOA is also able to gelate scCO(2) leading to novel composite aerogel materials. As revealed by SAXS measurements, the hybrid and the pure DDOA and DC13 aerogels display cell parameters that are very similar. These SAXS experiments suggest that crystallographic conditions are very favorable for the growth of hybrid molecular arrangements in which DDOA and DC13 units could be interchanged. Specific molecular interactions between two components are not always a pre-requisite condition for the formation of a hybrid nanostructured material in which the components mutually induce properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study correlating uniaxial stress in a polymer with its underlying structure when it is strained. The uniaxial stress is significantly influenced by the mean-square bond length and mean bond angle. In contrast, the size and shape of the polymer, typically represented by the end-to-end length, mass ratio, and radius of gyration, contribute negligibly. Among externally set control variables, density and polymer chain length play a critical role in influencing the anisotropic uniaxial stress. Short chain polymers more or less behave like rigid molecules. Temperature and rate of loading, in the range considered, have a very mild effect on the uniaxial stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural characterizations using XRD and C-13 NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45 degrees in the smectic C phase and about 40 degrees in tilted hexatic phase. C-13 NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the C-13-H-1 dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of AAV2 mediated hepatic gene transfer in human trials for diseases such as hemophilia has been hampered by a combination of low transduction efficiency and a robust immune response directed against these vectors. We have previously shown that AAV2 is targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of the serine(S)/threonine(T) kinase and lysine(K) targets on AAV capsid is beneficial. Thus targeted single mutations of S/T>A(S489A, S498A, T251A) and K>R (K532R) improved the efficiency of gene transfer in vivo as compared to wild type (WT)-AAV2 vectors (∼6-14 fold). In the present study, we evaluated if combined alteration of the phosphodegrons (PD), which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, improves further the gene transfer efficiency. Thus, we generated four multiple mutant vectors (PD: 1+3, S489A+K532R, PD: 1+3, S489A+K532R together with T251 residue which did not lie in any of the phosphodegrons but had shown increased transduction efficiency compared to the WT-AAV2 vector (∼6 fold) and was also conserved in 9 out of 10 AAV serotypes (AAV 1 to 10), PD: 1+3, S489A+K532R+S498A and a fourth combination of PD: 3, K532R+T251. We then evaluated them in vitro and in vivo and compared their gene transfer efficiency with either the WT-AAV2 or the best single mutant S489A-AAV2 vector. The novel multiple mutations on the AAV2 capsid did not affect the overall vector packaging efficiency. All the multiple AAV2 mutants showed superior transduction efficiency in HeLa cells in vitro when compared to either the WT (62-72% Vs 21%) or the single mutant S489A (62-72% Vs 50%) AAV2 vectors as demonstrated by FACS analysis (Fig. 1A). On hepatic gene transfer with 5x10^10 vgs per animal in C57BL/6 mice, all the multiple mutants showed increased transgene expression compared to either the WT-AAV2 (∼15-23 fold) or the S489A single mutant vector (∼2-3 fold) (Fig.1B and C). These novel multiple mutant AAV2 vectors also showed higher vector copy number in murine hepatocytes 4 weeks post transduction, as compared to the WT-AAV2 (∼5-6 Vs 1.4 vector copies/diploid genome) and further higher when compared to the single mutant S489A(∼5-6 fold Vs 3.8 fold) (Fig.1D). Further ongoing studies will demonstrate the therapeutic benefit of one or more of the multiple mutants vectors in preclinical models of hemophilia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac(6)c, Ala; Aib = alpha-aminoisobutyric acid; Ac(6)c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac(6)c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described. All the octapeptides adopt type II' beta-turn nucleated hairpins, stabilized by three or four cross-strand intramolecular hydrogen bonds. The angle of twist between the two antiparallel strands lies in the range of -9.8 degrees to -26.7 degrees. A detailed analysis of packing motifs in peptide hairpin crystals is presented, revealing three broad modes of association: parallel packing, antiparallel packing and orthogonal packing. An attempt to correlate aggregation modes in solution with observed packing motifs in crystals has been made by indexing of crystal faces in the case of three of the peptide hairpins. The observed modes of hairpin aggregation may be of relevance in modeling multiple modes of association, which may provide insights into the structure of insoluble polypeptide aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background of the Work: The phylogenetic position and evolution of Hemidactylus anamallensis (family Gekkonidae) has been much debated in recent times. In the past it has been variously assigned to genus Hoplodactylus (Diplodactylidae) as well as a monotypic genus `Dravidogecko' (Gekkonidae). Since 1995, this species has been assigned to Hemidactylus, but there is much disagreement between authors regarding its phylogenetic position within this genus. In a recent molecular study H. anamallensis was sister to Hemidactylus but appeared distinct from it in both mitochondrial and nuclear markers. However, this study did not include genera closely allied to Hemidactylus, thus a robust evaluation of this hypothesis was not undertaken. Methods: The objective of this study was to investigate the phylogenetic position of H. anamallensis within the gekkonid radiation. To this end, several nuclear and mitochondrial markers were sequenced from H. anamallensis, selected members of the Hemidactylus radiation and genera closely allied to Hemidactylus. These sequences in conjunction with published sequences were subjected to multiple phylogenetic analyses. Furthermore the nuclear dataset was also subjected to molecular dating analysis to ascertain the divergence between H. anamallensis and related genera. Results and Conclusion: Results showed that H. anamallensis lineage was indeed sister to Hemidactylus group but was separated from the rest of the Hemidactylus by a long branch. The divergence estimates supported a scenario wherein H. anamallensis dispersed across a marine barrier to the drifting peninsular Indian plate in the late Cretaceous whereas Hemidactylus arrived on the peninsular India after the Indian plate collided with the Eurasian plate. Based on these molecular evidence and biogeographical scenario we suggest that the genus Dravidogecko should be resurrected.