991 resultados para Roger Mandle
Resumo:
We present a novel approach to network security against passive eavesdroppers by employing a configurable beam-forming technique to create tightly defined regions of coverage for targeted users. In contrast to conventional encryption methods, our security scheme is developed at the physical layer by configuring antenna array beam patterns to transmit the data to specific regions. It is shown that this technique can effectively reduce vulnerability of the physical regions to eavesdropping by adapting the antenna configuration according to the intended user's channel state information. In this paper we present the application of our concept to 802.11n networks where an antenna array is employed at the access point, and consider the issue of minimizing the coverage area of the region surrounding the targeted user. A metric termed the exposure region is formally defined and used to evaluate the level of security offered by this technique. A range of antenna array configurations are examined through analysis and simulation, and these are subsequently used to obtain the optimum array configuration for a user traversing a coverage area.
Resumo:
The paper presents IPPro which is a high performance, scalable soft-core processor targeted for image processing applications. It has been based on the Xilinx DSP48E1 architecture using the ZYNQ Field Programmable Gate Array and is a scalar 16-bit RISC processor that operates at 526MHz, giving 526MIPS of performance. Each IPPro core uses 1 DSP48, 1 Block RAM and 330 Kintex-7 slice-registers, thus making the processor as compact as possible whilst maintaining flexibility and programmability. A key aspect of the approach is in reducing the application design time and implementation effort by using multiple IPPro processors in a SIMD mode. For different applications, this allows us to exploit different levels of parallelism and mapping for the specified processing architecture with the supported instruction set. In this context, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the colour and morphology operations accelerated using multiple IPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 to 33 times for colour filtering and morphology operations respectively, with a reduced design effort and time.
Resumo:
Background: Vaginal ring devices are being actively developed for controlled delivery of HIV microbicides and as multi-purpose prevention technology (MPT) products combining hormonal contraception with prevention of HIV and other sexually transmitted diseases. Presently, there is no reliable method for monitoring user adherence in HIV vaginal ring trials; previous acceptability studies have included some type of participant self-reporting mechanism, which have often been unreliable. More objective, quantitative and accurate methods for assessing adherence are needed.
Methods: A silicone elastomer vaginal ring containing an encapsulated miniature temperature recording device has been developed that can capture and store real-time temperature data during the period of designated use. Devices were tested in both simulated vaginal environments and following vaginal placement in cynomolgus macaques. Various use protocols and data sampling rates were tested to simulate typical patient usage scenarios. Results: The temperature logging devices accurately recorded vaginal temperature in macaques, clearly showing the regular diurnal temperature cycle. When environmental temperature and vaginal temperature was significantly different, the device was able to accurately pinpoint the insertion and removal times. Based on the data collected it was possible to infer removal periods as short as 5 min when the external environmental temperature was 25 °C. Accuracy increased with data sampling rate. Conclusions: This work provides proof-of-concept for monitoring adherence using a vaginal ring device containing an encapsulated temperature logger. The addition of one or more active agents into the ring body is not anticipated to affect the temperature monitoring function. A clinical study to compare self- reported user adherence data with that obtained by the device would be highly informative.
Resumo:
Low-power processors and accelerators that were originally designed for the embedded systems market are emerging as building blocks for servers. Power capping has been actively explored as a technique to reduce the energy footprint of high-performance processors. The opportunities and limitations of power capping on the new low-power processor and accelerator ecosystem are less understood. This paper presents an efficient power capping and management infrastructure for heterogeneous SoCs based on hybrid ARM/FPGA designs. The infrastructure coordinates dynamic voltage and frequency scaling with task allocation on a customised Linux system for the Xilinx Zynq SoC. We present a compiler-assisted power model to guide voltage and frequency scaling, in conjunction with workload allocation between the ARM cores and the FPGA, under given power caps. The model achieves less than 5% estimation bias to mean power consumption. In an FFT case study, the proposed power capping schemes achieve on average 97.5% of the performance of the optimal execution and match the optimal execution in 87.5% of the cases, while always meeting power constraints.
Resumo:
The ability to exchange keys between users is vital in any wireless based security system. A key generation technique exploits the randomness of the wireless channel is a promising alternative to existing key distribution techniques, e.g., public key cryptography. In this paper a secure key generation scheme based on the subcarriers’ channel responses in orthogonal frequencydivision multiplexing (OFDM) systems is proposed. We first implement a time-variant multipath channel with its channel impulse response modelled as a wide sense stationary (WSS) uncorrelated scattering random process and demonstrate that each subcarrier’s channel response is also a WSS random process. We then define the X% coherence time as the time required to produce an X% correlation coefficient in the autocorrelation function (ACF) of each channel tap, and find that when all the channel taps have the same Doppler power spectrum, all subcarriers’ channel responses has the same ACF as the channel taps. The subcarrier’s channel response is then sampled every X% coherence time and quantized into key bits. All the key sequences’ randomness is tested using National Institute of Standards and Technology (NIST) statistical test suite and the results indicate that the commonly used sampling interval as 50% coherence time cannot guarantee the randomness of the key sequence.
Resumo:
With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.