986 resultados para Robust estimates
Resumo:
Background
Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006), Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures.
Results
Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively). Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method.
Conclusion
The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.
Resumo:
The importance and use of text extraction from camera based coloured scene images is rapidly increasing with time. Text within a camera grabbed image can contain a huge amount of meta data about that scene. Such meta data can be useful for identification, indexing and retrieval purposes. While the segmentation and recognition of text from document images is quite successful, detection of coloured scene text is a new challenge for all camera based images. Common problems for text extraction from camera based images are the lack of prior knowledge of any kind of text features such as colour, font, size and orientation as well as the location of the probable text regions. In this paper, we document the development of a fully automatic and extremely robust text segmentation technique that can be used for any type of camera grabbed frame be it single image or video. A new algorithm is proposed which can overcome the current problems of text segmentation. The algorithm exploits text appearance in terms of colour and spatial distribution. When the new text extraction technique was tested on a variety of camera based images it was found to out perform existing techniques (or something similar). The proposed technique also overcomes any problems that can arise due to an unconstraint complex background. The novelty in the works arises from the fact that this is the first time that colour and spatial information are used simultaneously for the purpose of text extraction.
Resumo:
The sediment sequence from Hasseldala port in southeastern Sweden provides a unique Lateglacial/early Holocene record that contains five different tephra layers. Three of these have been geochemically identified as the Borrobol Tephra, the Hasseldalen Tephra and the 10-ka Askja Tephra. Twenty-eight high-resolution C-14 measurements have been obtained and three different age models based on Bayesian statistics are employed to provide age estimates for the five different tephra layers. The chrono- and pollen stratigraphic framework supports the stratigraphic position of the Borrobol Tephra as found in Sweden at the very end of the Older Dryas pollen zone and provides the first age estimates for the Askja and Hasseldalen tephras. Our results, however, highlight the limitations that arise in attempting to establish a robust, chronologically independent lacustrine sequence that can be correlated in great detail to ice core or marine records. Radiocarbon samples are prone to error and sedimentation rates in lake basins may vary considerably due to a number of factors. Any type of valid and 'realistic' age model, therefore, has to take these limitations into account and needs to include this information in its prior assumptions. As a result, the age ranges for the specific horizons at Hasseldala port are large and calendar year estimates differ according to the assumptions of the age-model. Not only do these results provide a cautionary note for overdependence on one age-model for the derivation of age estimates for specific horizons, but they also demonstrate that precise correlations to other palaeoarchives to detect leads or lags is problematic. Given the uncertainties associated with establishing age-depth models for sedimentary sequences spanning the Lateglacial period, however, this exercise employing Bayesian probability methods represents the best possible approach and provides the most statistically significant age estimates for the pollen zone boundaries and tephra horizons. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H 8 adaptive filters (finite memory, exponentially weighted, and time-varying) for accurate estimation and detection of the HDR. The H 8 approach is used because it safeguards against the worst case disturbances and makes no assumptions on the (statistical) nature of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP, 1995, vol. 2, pp. 949-952; T. Ratnarajah and S. Puthusserypady, in Proc. 8th IEEE Workshop DSP, 1998, pp. 1483-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections.
Resumo:
This study investigates face recognition with partial occlusion, illumination variation and their combination, assuming no prior information about the mismatch, and limited training data for each person. The authors extend their previous posterior union model (PUM) to give a new method capable of dealing with all these problems. PUM is an approach for selecting the optimal local image features for recognition to improve robustness to partial occlusion. The extension is in two stages. First, authors extend PUM from a probability-based formulation to a similarity-based formulation, so that it operates with as little as one single training sample to offer robustness to partial occlusion. Second, they extend this new formulation to make it robust to illumination variation, and to combined illumination variation and partial occlusion, by a novel combination of multicondition relighting and optimal feature selection. To evaluate the new methods, a number of databases with various simulated and realistic occlusion/illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.
Resumo:
In this paper we provide a detailed profile and analysis of the regional risk capital market in Scotland, using an innovative methodology and specially developed databases which cover risk capital investment in young companies in the periods 2000–04 and 2005–07. This identifies the investment activity of all actors in the market and provides estimates of the total flow of risk capital investment into early-stage Scottish companies over the period. The paper concludes by drawing out the implications for policy makers (providing a more robust evidence base for the development, implementation and monitoring of policy) and for academic researchers (on the methodologies for estimating market scale and efficiency).