892 resultados para Robot collaboratif
Resumo:
There has been an increasing interest in applying biological principles to the design and control of robots. Unlike industrial robots that are programmed to execute a rather limited number of tasks, the new generation of bio-inspired robots is expected to display a wide range of behaviours in unpredictable environments, as well as to interact safely and smoothly with human co-workers. In this article, we put forward some of the properties that will characterize these new robots: soft materials, flexible and stretchable sensors, modular and efficient actuators, self-organization and distributed control. We introduce a number of design principles; in particular, we try to comprehend the novel design space that now includes soft materials and requires a completely different way of thinking about control. We also introduce a recent case study of developing a complex humanoid robot, discuss the lessons learned and speculate about future challenges and perspectives.
Resumo:
Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.
Resumo:
The adaptation of robots to changing tasks has been explored in modular self-reconfigurable robot research, where the robot structure is altered by adapting the connectivity of its constituent modules. As these modules are generally complex and large, an upper bound is imposed on the resolution of the built structures. Inspired by growth of plants or animals, robotic body extension (RBE) based on hot melt adhesives allows a robot to additively fabricate and assemble tools, and integrate them into its own body. This enables the robot to achieve tasks which it could not achieve otherwise. The RBE tools are constructed from hot melt adhesives and therefore generally small and only passive. In this paper, we seek to show physical extension of a robotic system in the order of magnitude of the robot, with actuation of integrated body parts, while maintaining the ability of RBE to construct parts with high resolution. Therefore, we present an enhancement of RBE based on hot melt adhesives with modular units, combining the flexibility of RBE with the advantages of simple modular units. We explain the concept of this new approach and demonstrate with two simple unit types, one fully passive and the other containing a single motor, how the physical range of a robot arm can be extended and additional actuation can be added to the robot body. © 2012 IEEE.
Resumo:
Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.
Resumo:
The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot's own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a "water scooping" task. © 2012 IEEE.
Resumo:
Due to technological limitations, robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of behaviors is necessary for autonomous robots in uncertain complex environments. In an effort to increase the versatility of actuators, we introduce a new concept of multimodal actuation (MMA) that employs dynamic coupling in the form of clutches and brakes to change its mode of operation. The dynamic coupling allows motors and passive elements such as springs to be engaged and disengaged within a single actuator. We apply the concept to a linear series elastic actuator which uses friction brakes controlled online for the dynamic coupling. With this prototype, we are able to demonstrate several modes of operation including stiff position control, series elastic actuation as well as the possibility to store and release energy in a controlled manner for explosive tasks such as jumping. In this paper, we model the proposed concept of actuation and show a systematic performance analysis of the physical prototype that we developed in our laboratory. © 1996-2012 IEEE.
Resumo:
It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.
Resumo:
Due to technological limitations robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of output and behaviours is necessary for robots to operate autonomously in uncertain complex environments. We present a design framework that employs dynamic couplings in the form of brakes and clutches to increase the performance and diversity of linear actuators. The couplings are used to switch between a diverse range of discrete modes of operation within a single actuator. We also provide a design solution for miniaturized couplings that use dry friction to produce rapid switching and high braking forces. The couplings are designed so that once engaged or disengaged no extra energy is consumed. We apply the design framework and coupling design to a linear series elastic actuator (SEA) and show that this relatively simple implementation increases the performance and adds new behaviours to the standard design. Through a number of performance tests we are able to show rapid switching between a high and a low impedance output mode; that the actuator's spring can be charged to produce short bursts of high output power; and that the actuator has additional passive and rigid modes that consume no power once activated. Robots using actuators from this design framework would see a vast increase in their behavioural diversity and improvements in their performance not yet possible with conventional actuator design. © 2012 IEEE.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
While underactuated robotic systems are capable of energy efficient and rapid dynamic behavior, we still do not fully understand how body dynamics can be actively used for adaptive behavior in complex unstructured environment. In particular, we can expect that the robotic systems could achieve high maneuverability by flexibly storing and releasing energy through the motor control of the physical interaction between the body and the environment. This paper presents a minimalistic optimization strategy of motor control policy for underactuated legged robotic systems. Based on a reinforcement learning algorithm, we propose an optimization scheme, with which the robot can exploit passive elasticity for hopping forward while maintaining the stability of locomotion process in the environment with a series of large changes of ground surface. We show a case study of a simple one-legged robot which consists of a servomotor and a passive elastic joint. The dynamics and learning performance of the robot model are tested in simulation, and then transferred the results to the real-world robot. ©2007 IEEE.
Resumo:
Passive dynamics plays an important role in legged locomotion of the biological systems. The use of passive dynamics provides a number of advantages in legged locomotion such as energy efficiency, self-stabilization against disturbances, and generating gait patterns and behavioral diversity. Inspired from the theoretical and experimental studies in biomechanics, this paper presents a novel bipedal locomotion model for walking and running behavior which uses compliant legs. This model consists of three-segment legs, two servomotors, and four passive joints that are constrained by eight tension springs. The self-organization of two gait patterns (walking and running) is demonstrated in simulation and in a real-world robot. The analysis of joint kinematics and ground reaction force explains how a minimalistic control architecture can exploit the particular leg design for generating different gait patterns. Moreover, it is shown how the proposed model can be extended for controlling locomotion velocity and gait patterns with the simplest control architecture. © 2007 IEEE.
Resumo:
There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.
Resumo:
As observed in nature, complex locomotion can be generated based on an adequate combination of motor primitives. In this context, the paper focused on experiments which result in the development of a quality criterion for the design and analysis of motor primitives. First, the impact of different vocabularies on behavioural diversity, robustness of prelearned behaviours and learning process is elaborated. The experiments are performed with the quadruped robot MiniDog6M for which a running and standing up behaviour is implemented. Further, a reinforcement learning approach based on Q-learning is introduced which is used to select an adequate sequence of motor primitives. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
It has been shown that sensory morphology and sensory-motor coordination enhance the capabilities of sensing in robotic systems. The tasks of categorization and category learning, for example, can be significantly simplified by exploiting the morphological constraints, sensory-motor couplings and the interaction with the environment. This paper argues that, in the context of sensory-motor control, it is essential to consider body dynamics derived from morphological properties and the interaction with the environment in order to gain additional insight into the underlying mechanisms of sensory-motor coordination, and more generally the nature of perception. A locomotion model of a four-legged robot is used for the case studies in both simulation and real world. The locomotion model demonstrates how attractor states derived from body dynamics influence the sensory information, which can then be used for the recognition of stable behavioral patterns and of physical properties in the environment. A comprehensive analysis of behavior and sensory information leads to a deeper understanding of the underlying mechanisms by which body dynamics can be exploited for category learning of autonomous robotic systems. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Locomotion is of fundamental importance in understanding adaptive behavior. In this paper we present two case studies of robot locomotion that demonstrate how higher level of behavioral diversity can be achieved while observing the principle of cheap design. More precisely, it is shown that, by exploiting the dynamics of the system-environment interaction, very simple controllers can be designed which is essential to achieve rapid locomotion. Special consideration must be given to the choice of body materials. We conclude with some speculation about the importance of locomotion for understanding cognition. © Springer-Verlag Berlin Heidelberg 2004.