933 resultados para Retrospective Data
Resumo:
Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.
Resumo:
Road asset managers are seeking analysis of the whole road network to supplement statistical analyses of small subsets of homogeneous roadway. This study outlines the use of data mining capable of analyzing the wide range of situations found on the network, with a focus on the role of skid resistance in the cause of crashes. Results from the analyses show that on non-crash-prone roads with low crash rates, skid resistance contributes only in a minor way, whereas on high-crash roadways, skid resistance often contributes significantly in the calculation of the crash rate. The results provide evidence supporting a causal relationship between skid resistance and crashes and highlight the importance of the role of skid resistance in decision making in road asset management.
Resumo:
Annually, several million tonnes of waste are produced from reworks, demolition, and use of substandard materials. Building Information Modelling (BIM), a digital representation of facilities and their constituent data, is a viable means of addressing some concerns about the impacts of these processes. BIM functionalities can be extended and combined with rich building information from specifications and product libraries, for efficient, streamlined design and construction. This paper conceptualises a framework for BIM-knowledge transfer from advanced economies for adaptation and use in urban development works in developing nations using the Sydney Down Under and Lagos Eko Atlantic projects as reference points. We present a scenario that highlights BIM-based lifecycle planning/specifications as agents of sustainable construction (in terms of cost and time) crucial to the quality of as-built data from early on in city development. We show how, through the use of BIM, city planners in developing nations can avoid high, retrospective (and sometimes wasteful) maintenance costs and leapfrog infrastructure management standards of advanced economies. Finally, this paper illustrates how BIM can address concerns about economic sustainability during city development in developing countries by enriching model objects with specification information sourced from a product library.
Resumo:
This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.
Resumo:
We explore the relationship between form and data as a design agenda and learning strategy for novice visual information designers. Our students are university seniors in digital, visual design but novices to information design, manipulation and interpretation. We describe design strategies developed to scaffold sophisticated aesthetic and conceptual engagement despite limited understanding of the domain of designing with information. These revolve around an open-ended design project where students created a physical design from data of their choosing and research. The accompanying learning strategies concern this relationship between data and form to investigate it materially, formally and through ideation. Exemplifying student works that cross media and design domains are described.
Resumo:
Objective Describe the demographics of undergraduate paramedic students enrolled at a major Queensland University and explore the potential impact of demographic change in the paramedic workforce of the future. Method A retrospective, descriptive analysis of de-identified, routinely collected administrative data on students enrolled in the paramedic undergraduate degree program at Queensland University of Technology was undertaken for the period 2005-2013. Quantitative data were examined using the Statistical Package for Social Science version 21. Results A total of 914 students had commenced the paramedic degree since 2005, of whom slightly more than a third (33.4%; SD 9.5%) were enrolled in the double degree with nursing beginning from 2009. Half of the student cohort (52.1%;, SD 4.8%) were female, with the majority (82.9%;, SD 3.4) aged under 25 years old. Most (45.2%;, SD 13) of the student admissions were for graduate entry [i.e. prior tertiary education had been completed], while secondary education entry represented 35.9% (SD 14.9%). Conclusion By contrasting the results of our study to the most recent demographic data of the Australian paramedic workforce, a significant difference in the demographic characteristics of the current and future paramedic workforce is noted. Due to these differences, the need for increased flexibility in employment arrangements should be anticipated. This presentation will explore these characteristics and provide a complementary evidence base on which workforce planning within ambulance services can be conducted.
Resumo:
In recent years, increasing focus has been made on making good business decisions utilizing the product of data analysis. With the advent of the Big Data phenomenon, this is even more apparent than ever before. But the question is how can organizations trust decisions made on the basis of results obtained from analysis of untrusted data? Assurances and trust that data and datasets that inform these decisions have not been tainted by outside agency. This study will propose enabling the authentication of datasets specifically by the extension of the RESTful architectural scheme to include authentication parameters while operating within a larger holistic security framework architecture or model compliant to legislation.