933 resultados para Resistance Associated Protein-2
Resumo:
The chloroplast gene psbD encodes D2, a chlorophyll-binding protein located in the photosystem II reaction center. Transcription of psbD in higher plants involves at least three promoters, one of which is regulated by blue light. The psbD blue-light-regulated promoter (BLRP) consists of a −10 promoter element and an activating complex, AGF, that binds immediately upstream of −35. A second sequence-specific DNA-binding complex, PGTF, binds upstream of AGF between −71 and −100 in the barley (Hordeum vulgare) psbD BLRP. In this study we report that ADP-dependent phosphorylation selectively inhibits the binding of PGTF to the barley psbD BLRP. ATP at high concentrations (1–5 mm) inhibits PGTF binding, but in the presence of phosphocreatine and phosphocreatine kinase, this capacity is lost, presumably due to scavenging of ADP. ADP inhibits PGTF binding at relatively low concentrations (0.1 mm), whereas other nucleotides are unable to mediate this response. ADP-mediated inhibition of PGTF binding is reduced in the presence of the protein kinase inhibitor K252a. This and other results suggest that ADP-dependent phosphorylation of PGTF (or some associated protein) inhibits binding of PGTF to the psbD BLRP and reduces transcription. ADP-dependent phosphorylation is expected to increase in darkness in parallel with the rise in ADP levels in chloroplasts. ADP-dependent phosphorylation in chloroplasts may, therefore, in coordination, inactivate enzymes involved in carbon assimilation, protein synthesis, and transcription during diurnal light/dark cycles.
Resumo:
Biochemical studies with model DNA heteroduplexes have implicated RecJ exonuclease, exonuclease VII, exonuclease I, and exonuclease X in Escherichia coli methyl-directed mismatch correction. However, strains deficient in the four exonucleases display only a modest increase in mutation rate, raising questions concerning involvement of these activities in mismatch repair in vivo. The quadruple mutant deficient in the four exonucleases, as well as the triple mutant deficient in RecJ exonuclease, exonuclease VII, and exonuclease I, grow poorly in the presence of the base analogue 2-aminopurine, and exposure to the base analogue results in filament formation, indicative of induction of SOS DNA damage response. The growth defect and filamentation phenotypes associated with 2-aminopurine exposure are effectively suppressed by null mutations in mutH, mutL, mutS, or uvrD/mutU, which encode activities that act upstream of the four exonucleases in the mechanism for the methyl-directed reaction that has been proposed based on in vitro studies. The quadruple exonuclease mutant is also cold-sensitive, having a severe growth defect at 30°C. This phenotype is suppressed by a uvrD/mutU defect, and partially suppressed by mutH, mutL, or mutS mutations. These observations confirm involvement of the four exonucleases in methyl-directed mismatch repair in vivo and suggest that the low mutability of exonuclease-deficient strains is a consequence of under recovery of mutants due to a reduction in viability and/or chromosome loss associated with activation of the mismatch repair system in the absence of RecJ exonuclease, exonuclease VII, exonuclease I, and exonuclease X.
Resumo:
The microtubule-associated protein τ is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in the form of paired helical filaments (PHF) in the brains of patients with Alzheimer's disease (AD) and patients with several other tauopathies. Here, we show that the abnormally hyperphosphorylated τ from AD brain cytosol (AD P-τ) self-aggregates into PHF-like structures on incubation at pH 6.9 under reducing conditions at 35°C during 90 min. In vitro dephosphorylation, but not deglycosylation, of AD P-τ inhibits its self-association into PHF. Furthermore, hyperphosphorylation induces self-assembly of each of the six τ isoforms into tangles of PHF and straight filaments, and the microtubule binding domains/repeats region in the absence of the rest of the molecule can also self-assemble into PHF. Thus, it appears that τ self-assembles by association of the microtubule binding domains/repeats and that the abnormal hyperphosphorylation promotes the self-assembly of τ into tangles of PHF and straight filaments by neutralizing the inhibitory basic charges of the flanking regions.
Resumo:
Long-lasting forms of activity-dependent synaptic plasticity involve molecular modifications that require gene expression. Here, we describe a cellular mechanism that mediates the targeting newly synthesized gene transcripts to individual synapses where they are locally translated. The features of this mechanism have been revealed through studies of the intracellular transport and synaptic targeting of the mRNA for a recently identified immediate early gene called activity-regulated cytoskeleton-associated protein Arc. Arc is strongly induced by patterns of synaptic activity that also induce long-term potentiation, and Arc mRNA is then rapidly delivered into dendrites after episodes of neuronal activation. The newly synthesized Arc mRNA localizes selectively at synapses that recently have been activated, and the encoded protein is assembled into the synaptic junctional complex. The dynamics of trafficking of Arc mRNA reveal key features of the mechanism through which synaptic activity can both induce gene expression and target particular mRNA transcripts to the active synapses.
Resumo:
We have introduced a targeted mutation in SH2D1A/DSHP/SAP, the gene responsible for the human genetic disorder X-linked lymphoproliferative disease (XLP). SLAM-associated protein (SAP)-deficient mice had normal lymphocyte development, but on challenge with infectious agents, recapitulated features of XLP. Infection of SAP− mice with lymphocyte choriomeningitis virus (LCMV) or Toxoplasma gondii was associated with increased T cell activation and IFN-γ production, as well as a reduction of Ig-secreting cells. Anti-CD3-stimulated splenocytes from uninfected SAP− mice produced increased IFN-γ and decreased IL-4, findings supported by decreased serum IgE levels in vivo. The Th1 skewing of these animals suggests that cytokine misregulation may contribute to phenotypes associated with mutation of SH2D1A/SAP.
Resumo:
We have modified the infectious reovirus RNA system so as to generate a reovirus reverse genetics system. The system consists of (i) the plus strands of nine wild-type reovirus genome segments; (ii) transcripts of the genetically modified cDNA form of the tenth genome segment; and (iii) a cell line transformed so as to express the protein normally encoded by the tenth genome segment. In the work described here, we have generated a serotype 3 reovirus into the S2 double-stranded RNA genome segment of which the CAT gene has been cloned. The virus is stable, replicates in cells that have been transformed (so as to express the S2 gene product, protein σ2), and expresses high levels of CAT activity. This technology can be extended to members of the orbivirus and rotavirus genera. This technology provides a powerful system for basic studies of double-stranded RNA virus replication; a nonpathogenic viral vector that replicates to high titers and could be used for clinical applications; and a system for providing nonselectable viral variants (the result of mutations, insertions, and deletions) that could be valuable for the construction of viral vaccine strains against human and animal pathogens.
Resumo:
The estrogen receptor (ER) is a ligand-dependent transcription factor that regulates expression of target genes in response to estrogen in concert with other cellular signaling pathways. This suggests that the mechanism by which ER transmits an activating signal to the general transcription machinery may include factors that integrate these diverse signals. We have previously characterized the estrogen receptor-associated protein, ERAP160, as a factor that complexes with ER in an agonist-dependent manner. We have now found that the transcriptional coactivator p300 associates with agonist bound ER and augments ligand-dependent activation by ER. Our studies show that an ER coactivator complex involves a direct hormone-dependent interaction between ER and ERAP160, resulting in the recruitment of p300. In addition, antibodies directed against the cloned steroid receptor coactivator 1 (SRC1) recognize ERAP160. The known role of p300 in multiple signal transduction pathways, including those involving the second messenger cAMP, suggests p300 functions as a point of integration between ER and these other pathways.
Resumo:
Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of differentiation of neuronal cells in developing brain. Cdk5 purified from nervous tissue phosphorylates neuronal cytoskeletal proteins including neurofilament proteins and microtubule-associated protein tau in vitro. These findings indicate that Cdk5 may have unique functions in neuronal cells, especially in the regulation of phosphorylation of cytoskeletal molecules. We report here generation of Cdk5(-/-) mice through gene targeting and their phenotypic analysis. Cdk5(-/-) mice exhibit unique lesions in the central nervous system associated with perinatal mortality. The brains of Cdk5(-/-) mice lack cortical laminar structure and cerebellar foliation. In addition, the large neurons in the brain stem and in the spinal cord show chromatolytic changes with accumulation of neurofilament immunoreactivity. These findings indicate that Cdk5 is an important molecule for brain development and neuronal differentiation and also suggest that Cdk5 may play critical roles in neuronal cytoskeleton structure and organization.
Resumo:
In Alzheimer disease (AD) the microtubule-associated protein tau is redistributed exponentially into paired helical filaments (PHFs) forming neurofibrillary tangles, which correlate with pyramidal cell destruction and dementia. Amorphous neuronal deposits and PHFs in AD are characterized by aggregation through the repeat domain and C-terminal truncation at Glu-391 by endogenous proteases. We show that a similar proteolytically stable complex can be generated in vitro following the self-aggregation of tau protein through a high-affinity binding site in the repeat domain. Once started, tau capture can be propagated by seeding the further accumulation of truncated tau in the presence of proteases. We have identified a nonneuroleptic phenothiazine previously used in man (methylene blue, MB), which reverses the proteolytic stability of protease-resistant PHFs by blocking the tau-tau binding interaction through the repeat domain. Although MB is inhibitory at a higher concentration than may be achieved clinically, the tau-tau binding assay was used to identify desmethyl derivatives of MB that have Ki values in the nanomolar range. Neuroleptic phenothiazines are inactive. Tau aggregation inhibitors do not affect the tau-tubulin interaction, which also occurs through the repeat domain. Our findings demonstrate that biologically selective pharmaceutical agents could be developed to facilitate the proteolytic degradation of tau aggregates and prevent the further propagation of tau capture in AD.
Resumo:
Agrobacterium tumefaciens, a bacterial plant pathogen, when transformed with plasmid constructs containing greater than unit length DNA of tomato leaf curl geminivirus accumulates viral replicative form DNAs indistinguishable from those produced in infected plants. The accumulation of the viral DNA species depends on the presence of two origins of replication in the DNA constructs and is drastically reduced by introducing mutations into the viral replication-associated protein (Rep or C1) ORF, indicating that an active viral replication process is occurring in the bacterial cell. The accumulation of these viral DNA species is not affected by mutations or deletions in the other viral open reading frames. The observation that geminivirus DNA replication functions are supported by the bacterial cellular machinery provides evidence for the theory that these circular single-stranded DNA viruses have evolved from prokaryotic episomal replicons.
Resumo:
The dwarfin protein family has been genetically implicated in transforming growth factor beta (TGF-beta)-like signaling pathways in Drosophila and Caenorhabditis elegans. To investigate the role of these proteins in mammalian signaling pathways, we have isolated and studied two murine dwarfins, dwarfin-A and dwarfin-C. Using antibodies against dwarfin-A and dwarfin-C, we show that these two dwarfins and an immunogenically related protein, presumably also a dwarfin, are phosphorylated in a time- and dose-dependent manner in response to TGF-beta. Bone morphogenetic protein 2, a TGF-beta superfamily ligand, induces phosphorylation of only the related dwarfin protein. Thus, TGF-beta superfamily members may use overlapping yet distinct dwarfins to mediate their intracellular signals. Furthermore, transient overexpression of either dwarfin-A or dwarfin-C causes growth arrest, implicating the dwarfins in growth regulation. This work provides strong biochemical and preliminary functional evidence that dwarfin-A and dwarfin-C represent prototypic members of a family of mammalian proteins that may serve as mediators of signaling pathways for TGF-beta superfamily members.
Resumo:
We demonstrate here that coexpression of ROMK2, an inwardly rectifying ATP-sensitive renal K+ channel (IKATP) with cystic fibrosis transmembrane regulator (CFTR) significantly enhances the sensitivity of ROMK2 to the sulfonylurea compound glibenclamide. When expressed alone, ROMK2 is relatively insensitive to glibenclamide. The interaction between ROMK2, CFTR, and glibenclamide is modulated by altering the phosphorylation state of either ROMK2, CFTR, or an associated protein, as exogenous MgATP and the catalytic subunit of protein kinase A significantly attenuate the inhibitory effect of glibenclamide on ROMK2. Thus CFTR, which has been demonstrated to interact with both Na+ and Cl- channels in airway epithelium, modulates the function of renal ROMK2 K+ channels.
Resumo:
Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.
Resumo:
Cadherins are homotypic adhesion molecules that classically mediate interactions between cells of the same type in solid tissues. In addition, E-cadherin is able to support homotypic adhesion of epidermal Langerhans cells to keratinocytes (Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. (1993) Nature (London) 361, 82-85) and heterotypic adhesion of mucosal epithelial cells to E-cadherin-negative intestinal intraepithelial T lymphocytes. Thus, we hypothesized that cadherins may play a wider role in cell-to-cell adhesion events involving T lymphocytes. We searched for a cadherin or cadherins in T lymphocytes with a pan-cadherin antiserum and antisera against alpha- or beta-catenin, molecules known to associate with the cytoplasmic domain of cadherins. The anti-beta-catenin antisera coimmunoprecipitated a radiolabeled species in T-lymphocyte lines that had a molecular mass of 129 kDa and was specifically immunoblotted with the pan-cadherin antiserum. Also, the pan-cadherin antiserum directly immunoprecipitated a 129-kDa radiolabeled species from an 125I surface-labeled Jurkat human T-cell leukemic cell line. After V8 protease digestion, the peptide map of this pan-cadherin-immunoprecipitated, 129-kDa species exactly matched that of the 129-kDa species coimmunoprecipitated with the beta-catenin antiserum. These results demonstrate that T lymphocytes express a catenin-associated protein that appears to be a member of the cadherin superfamily and may contribute to T cell-mediated immune surveillance.
Resumo:
The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.