924 resultados para Representación sustantiva


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Socioepistemología a través de diversos resultados de investigación, señala la conveniencia de hacer estudios del uso del conocimiento matemático y su desarrollo para crear un marco que ofrezca las prácticas de referencia en donde se resignifique la matemática. Bajo esa premisa estudiamos los usos de la gráfica en el bachillerato, con el fin de construir un marco de referencia que dé evidencia de los funcionamientos y formas de las gráficas y en consecuencia una resignificación del conocimiento. Lo anterior abre una nueva brecha para tratar a la gráfica, puesto que no la miramos como la representación de algún concepto matemático. Por el contrario, la graficación es abordada como la argumentación que genera conocimiento. En ese sentido, afirmamos que tratamos con una segmentación del conocimiento, puesto que hay un cambio de enfoque que nos conduce a teorizar sobre el uso del conocimiento y como consecuencia se genera un subuniverso de significados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el desarrollo de esta actividad se discute cómo se transforma una función, de la cual se conoce su representación gráfica y no su representación algebraica. La actividad consiste en un estudio de la gráfica de una función prototipo totalmente descontextualizada. Se propone la composición de funciones, operaciones entre gráficas y su relación con algunas formas analíticas asociadas al variar algunos de sus parámetros, para mirar el comportamiento global tanto de la función compuesta, como de la familia de funciones resultantes; que permita relacionar la representación gráfica de una función compuesta con las funciones que la componen y explorar patrones en las familias de éstas y así poder predecir el comportamiento de una función cualquiera bajo este tipo de transformaciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el siguiente artículo se propone un acercamiento numérico y gráfico al concepto de derivada y de función derivada. Para ello se propone iniciar introduciendo las ideas de diferencias, incrementos y razón de incrementos. El que esto escribe diseño y desarrollo un software de apoyo a la introducción de estas ideas. Para abordar la temática se exponen ideas teóricas, una exposición de lo propuesto en el software y algunos resultados obtenidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El documento que se presenta a continuación, tiene como propósito fundamental realizar una propuesta frente a la enseñanza de las cónicas a un nivel introductorio, en los cursos de educación media e incluso en los programas de licenciatura de la Facultad de Ciencia y Tecnología de la Universidad Pedagógica Nacional, particularmente para ofrecer una alternativa al paso de las representaciones sintéticas y analíticas de las cónicas. La propuesta esta apoyada en una serie de actividades con el uso de herramientas computacionales (en particular el software geogebra).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A partir de tres vectores linealmente independientes en R3 , y bajo otras condiciones, se construye una norma ' sobre R3 cuyas esferas de centro G y radio r > 0, son troncos de dipirámide regular octagonal afín recta de centro G. También, dado un poliedro F de este tipo, se establece que F, es también un cuerpo normado, respecto a esa norma ' construida a partir de F. La representación unificada de ' permite el estudio riguroso y versátil de la estructura geométrica de F, asistida por la noción de homotecia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estructura conceptual de las razones trigonométricas, como la de cualquier concepto de la matemática escolar, se caracteriza por las estructuras matemáticas involucradas, las relaciones conceptuales y las relaciones de representación. De esta manera, en esta comunicación presento el análisis sobre los hechos, conceptos y estructura conceptual del campo conceptual, y las destrezas, razonamientos y estrategias del campo procedimental de las razones trigonométricas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo pretende dar a conocer el avance, que hasta el momento se ha logrado, en la línea de investigación: “Visualización y pensamiento global en Matemáticas”, la cual persigue, a partir de la Teoría de Representaciones Semióticas de Duval, la caracterización del estilo de pensamiento global y local, de estudiantes de nivel medio superior y superior y de sus profesores. En particular reporto los resultados preliminares encontrados hasta el momento con estudiantes de primeros semestres de licenciatura al abordar un problema de precálculo, contrastado con desempeños en ajedrez para interpretar aspectos semejantes en cuanto a la forma local o global de pensar un problema viendo sus registros que lleven a resultados que pudieran servir en la mejora de la enseñanza de algunos temas de matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El artículo “El Número en la Escuela”presenta avances de investigación realizados por estudiantes de la Maestría en Docencia de las Matemáticas de la Universidad Pedagógica Nacional como parte de sus respectivos trabajos de grado. El primero, referido a la formación de docentes de preescolar y primeros grados de educación primaria sobre Estructura Aditiva, expone la forma en que abordar dicha estructura contribuye al proceso de construcción del número Natural en los primeros grados de escolaridad. El segundo, basado en el modelo del profesor Carlo Federici, estudia la construcción de los números racionales como operadores sobre magnitudes, específicamente, sobre longitudes cuya representación son los segmentos. Y el tercero, permite reflexionar sobre el acercamiento al concepto de número real con estudiantes de Secundaria y Media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este curso se pretende realizar análisis de funciones a partir de sus representaciones gráficas. Se parte del desarrollo de actividades de lectura, interpretación y construcción de gráficas de funciones sobre la base de un ambiente rico en significados visuales. Se desarrollarán actividades que requerirán procesos de conversión y tratamiento de diferentes sistemas semióticos de representación como el gráfico, verbal y analítico, pero predominantemente el gráfico. La validez de las argumentaciones que permitirán dar respuesta a los cuestionamientos incluidos en estas actividades, será de naturaleza eminentemente visual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este es un estudio de un caso acerca de las representaciones de números racionales en la recta numérica hechas a mano y utilizando un programa interactivo de una alumna de nivel medio superior. En un principio las representaciones de la alumna mostraron una clara comprensión de cómo representar el orden entre diferentes números en la recta numérica, pero no cómo representar correctamente las distancias entre ellos. La forma de representación utilizada (decimales o fracciones) también fue importante para que ella pudiera o no mostrar su comprensión de las distancias entre diversos números racionales. El estudio muestra el pensamiento de la alumna, sus dificultades y avances, a través de las interacciones con el entrevistador y el programa de computadora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El propósito de esta investigación en curso es indagar sobre las representaciones que tienen estudiantes del nivel medio superior (secundaria y primer nivel universitario) acerca de nociones matemáticas variacionales, prestando especial atención a su forma de aprenderlas y buscando propiciar espacios de reflexión respecto de ellas, con el objeto de aportar información que sirva de base para la elaboración de diseños didácticos tendientes a mediar -en procesos de profundidad creciente- aprendizajes de nociones matemáticas variacionales, por ejemplo, la razón de cambio de una magnitud. Como técnica exploratoria consideramos el uso de bitácoras personales de reflexión de los estudiantes, para luego, en una segunda etapa, derivar en la construcción y aplicación de un cuestionario y la realización de entrevistas para triangular fuentes de información. En este artículo se reportan evidencias de la primera etapa, provenientes de las bitácoras personales, en el contexto de un curso de cálculo inicial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los obstáculos para operar con la visualización por parte de los estudiantes, a la hora de estudiar lo que varía, muestran la importancia de promover el desarrollo de una “inteligencia visual”. En especial la construcción de gráficas, dado que es una importante herramienta que permite a los estudiantes realizar una actividad matemática escolar y por tanto desarrollar un pensamiento matemático. Herramienta didáctica que ha ido, desde el surgimiento de la tecnología digital, cobrando mayor importancia en la investigación tanto matemática como en didáctica de las matemáticas. A modo de ilustración en el comportamiento tendencial (Cordero, 2001) de las funciones, un estudiante aprende a “identificar” coeficientes en la función, a “reconocer” patrones de comportamientos gráficos, a “buscar” tendencias en los comportamientos y a "relacionar” funciones.