969 resultados para Remote sensing - Data acquisitions
Resumo:
Linear models of bidirectional reflectance distribution are useful tools for understanding the angular variability of surface reflectance as observed by medium-resolution sensors such as the Moderate Resolution Imaging Spectrometer. These models are operationally used to normalize data to common view and illumination geometries and to calculate integral quantities such as albedo. Currently, to compensate for noise in observed reflectance, these models are inverted against data collected during some temporal window for which the model parameters are assumed to be constant. Despite this, the retrieved parameters are often noisy for regions where sufficient observations are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large windows and, at the same time, produce individual parameter sets for each day even for regions where only sparse observations are available.
Resumo:
Vegetation distribution and state have been measured since 1981 by the AVHRR (Advanced Very High Resolution Radiometer) instrument through satellite remote sensing. In this study a correction method is applied to the Pathfinder NDVI (Normalized Difference Vegetation Index) data to create a continuous European vegetation phenology dataset of a 10-day temporal and 0.1° spatial resolution; additionally, land surface parameters for use in biosphere–atmosphere modelling are derived. The analysis of time-series from this dataset reveals, for the years 1982–2001, strong seasonal and interannual variability in European land surface vegetation state. Phenological metrics indicate a late and short growing season for the years 1985–1987, in addition to early and prolonged activity in the years 1989, 1990, 1994 and 1995. These variations are in close agreement with findings from phenological measurements at the surface; spring phenology is also shown to correlate particularly well with anomalies in winter temperature and winter North Atlantic Oscillation (NAO) index. Nevertheless, phenological metrics, which display considerable regional differences, could only be determined for vegetation with a seasonal behaviour. Trends in the phenological phases reveal a general shift to earlier (−0.54 days year−1) and prolonged (0.96 days year−1) growing periods which are statistically significant, especially for central Europe.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution “provenancing” of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the “provenancing” of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.
Resumo:
The goal was to quantitatively estimate and compare the fidelity of images acquired with a digital imaging system (ADAR 5500) and generated through scanning of color infrared aerial photographs (SCIRAP) using image-based metrics. Images were collected nearly simultaneously in two repetitive flights to generate multi-temporal datasets. Spatial fidelity of ADAR was lower than that of SCIRAP images. Radiometric noise was higher for SCIRAP than for ADAR images, even though noise from misregistration effects was lower. These results suggest that with careful control of film scanning, the overall fidelity of SCIRAP imagery can be comparable to that of digital multispectral camera data. Therefore, SCIRAP images can likely be used in conjunction with digital metric camera imagery in long-term landcover change analyses.
Resumo:
The absorption coefficient of a substance distributed as discrete particles in suspension is less than that of the same material dissolved uniformly in a medium—a phenomenon commonly referred to as the flattening effect. The decrease in the absorption coefficient owing to flattening effect depends on the concentration of the absorbing pigment inside the particle, the specific absorption coefficient of the pigment within the particle, and on the diameter of the particle, if the particles are assumed to be spherical. For phytoplankton cells in the ocean, with diameters ranging from less than 1 µm to more than 100 µm, the flattening effect is variable, and sometimes pronounced, as has been well documented in the literature. Here, we demonstrate how the in vivo absorption coefficient of phytoplankton cells per unit concentration of its major pigment, chlorophyll a, can be used to determine the average cell size of the phytoplankton population. Sensitivity analyses are carried out to evaluate the errors in the estimated diameter owing to potential errors in the model assumptions. Cell sizes computed for field samples using the model are compared qualitatively with indirect estimates of size classes derived from high performance liquid chromatography data. Also, the results are compared quantitatively against measurements of cell size in laboratory cultures. The method developed is easy-to-apply as an operational tool for in situ observations, and has the potential for application to remote sensing of ocean colour data.
Resumo:
Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
A new aerosol index for the Along-Track Scanning Radiometers (ATSRs) is presented that provides a means to detect desert dust contamination in infrared SST retrievals. The ATSR Saharan dust index (ASDI) utilises only the thermal infrared channels and may therefore be applied consistently to the entire ATSR data record (1991 to present), for both day time and night time observations. The derivation of the ASDI is based on a principal component (PC) analysis (PCA) of two unique pairs of channel brightness temperature differences (BTDs). In 2-D space (i.e. BTD vs BTD), it is found that the loci of data unaffected by aerosol are confined to a single axis of variability. In contrast, the loci of aerosol-contaminated data fall off-axis, shifting in a direction that is approximately orthogonal to the clear-sky axis. The ASDI is therefore defined to be the second PC, where the first PC accounts for the clear-sky variability. The primary ASDI utilises the ATSR nadir and forward-view observations at 11 and 12 μm (ASDI2). A secondary, three-channel nadir-only ASDI (ASDI3) is also defined for situations where data from the forward view are not available. Empirical and theoretical analyses suggest that ASDI is well correlated with aerosol optical depth (AOD: correlation r is typically > 0.7) and provides an effective tool for detecting desert mineral dust. Overall, ASDI2 is found to be more effective than ASDI3, with the latter being sensitive only to very high dust loading. In addition, use of ASDI3 is confined to night time observations as it relies on data from the 3.7 μm channel, which is sensitive to reflected solar radiation. This highlights the benefits of having data from both a nadir- and a forward-view for this particular approach to aerosol detection.
Resumo:
Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.