996 resultados para Reflective materials
Resumo:
The merits and demerits of cotton, polyethylene and combination of the two materials ascertained on the basis of cost, wear and tear, maintenance, total catch and qualitative analysis of the catch are discussed by making comparative fishing experiments with the three trawl gears made of these materials. The study can be concluded with a suggestion for switching over to polyethylene twisted monofilaments for better, in case of bottom trawls without in any way adversely affecting the catch of shrimps and at the same time for enhanced fish catch. Even though the combination net is found to be equal in efficiency as the polyethylene net this idea cannot be conveniently adopted from the point of view of economy.
Resumo:
An account of fishing vessel construction materials is given, with information on essential features, and a material account. Materials discussed in detail are steel, wood, aluminium, glass reinforced plastic, and ferro-cement.
Resumo:
A constitutive equation is developed for geometrically-similar sharp indentation of a material capable of elastic, viscous, and plastic deformation. The equation is based on a series of elements consisting of a quadratic (reversible) spring, a quadratic (time-dependent, reversible) dashpot, and a quadratic (time-independent, irreversible) slider-essentially modifying a model for an elastic-perfectly plastic material by incorporating a creeping component. Load-displacement solutions to the constitutive equation are obtained for load-controlled indentation during constant loading-rate testing. A characteristic of the responses is the appearance of a forward-displacing "nose" during unloading of load-controlled systems (e.g., magnetic-coil-driven "nanoindentation" systems). Even in the absence of this nose, and the associated initial negative unloading tangent, load-displacement traces (and hence inferred modulus and hardness values) are significantly perturbed on the addition of the viscous component. The viscous-elastic-plastic (VEP) model shows promise for obtaining material properties (elastic modulus, hardness, time-dependence) of time-dependent materials during indentation experiments.
Resumo:
The paper describes the selection of materials for the reliable operation of oceanographic instruments. For selecting the material, raft immersion tests were carried out for one year. Results of the tests are presented. Comparisons between metals were discussed.
Resumo:
The application of high performance textiles has grown significantly in the last 10 to 15 years. Various research groups throughout the United Kingdom, such as the Department of Trade and Industry, have identified technical textiles as a field for future development. There is little design guidance for joining of flexible materials or general property models that can be applied to theses materials. This lack is due to the large diversity of properties, structures and resulting behaviours of the materials that are classified as "Flexible Materials". This dissertation explores the issues that are involved in characterising the materials at the fibre, bulk and textile levels. Different units of measurement are used for each stage of the manufacturing process of flexible materials and this disparity creates problems when trying to make general comparisons (e.g. comparing textiles to polymer films). Thus, a possible solution to this is to create selection charts that allow designers to compare the strength of materials for a given mass per unit area. A design tool was created using the Cambridge Engineering Selector (CES) software to enable the selection of joining processes for material. The tool is effective in selecting a reduced number of viable joining processes. Through case studies it was shown that designers are required to examine the selected processes (identified by the software) in greater detail - in particular the economics and geometry of the joint - in order to identify the optimum joining process.