975 resultados para Rat liver mitochondria
Resumo:
1. An ATP-sensitive K+ (K-ATP) conductance has been identified using the perforated patch recording configuration in a population (52%) of dissociated neurones from adult rat intracardiac ganglia. The presence of the sulphonylurea receptor in approximately half of the intracardiac neurones was confirmed by labelling with fluorescent glibenclamide-BODIPY. 2. Under current clamp conditions in physiological solutions, leveromakalim (10 muM) evoked a hyperpolarization, which was inhibited by the sulphonylurea drugs glibenclamide and tolbutamide. 3. Under voltage clamp conditions in symmetrical (140 mM) K+ solutions, hath application of levcromakalim evoked an inward current with a density of similar to8 pA pF(-1) at -50 mV and a slope conductance of similar to9 nS, which reversed close to the potassium equilibrium potential (E-K). Cell dialysis with an ATP-free intracellular solution also evoked an inward current, which was inhibited by tolbutamide. 4. Bath application of either glibenclamide (10 muM) or tolbutamide (100 muM) depolarized adult intracardiac neurones by 3-5 mV, suggesting that a K-ATP conductance is activated under resting conditions and contributes to the resting membrane potential. 5. Activation of a membrane current by levcromakalim leas concentration dependent, with an EC50 of 1.6 muM. Inhibition of the levcromakalim-activated current by glibenclamide leas also concentration dependent, with an IC50 of 55 nM. 6. Metabolic inhibition with 2,4-dinitrophenol and iodoacetic acid or superfusion with hypoxic solution (P-O2 similar to 16 mmHg) also activated a membrane current. These currents exhibited similar I-P characteristics to the levcroinakalim-induced current and were inhibited by glibenclamide. 7. Activation of K-ATP channels in mammalian intracardiac neurones may contribute to changes in neural regulation of the mature heart and. cardiac function during ischaemia-reperfusion.
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Resumo:
The hyperpolarization-activated nonselective cation current, I-h, was investigated in neonatal and adult rat intracardiac neurons. I-h was observed in all neurons studied and displayed slow time-dependent rectification. I-h was isolated by blockade with external Cs+ (2 mM) and was inhibited irreversibly by the bradycardic agent, ZD 7288. Current density of I-h was approximately twofold greater in neurons from neonatal (-4.1 pA/pF at -130 mV) as compared with adult (-2.3 pA/pF) rats; however, the reversal potential and activation parameters were unchanged. The reversal potential and amplitude of I-h was sensitive to changes in external Na+ and K+ concentrations. An inwardly rectifying K+ current, I-K(IR), was also present in intracardiac neurons from adult but not neonatal rats and was blocked by extracellular Ba2+. I-K(IR) was present in approximately one-third of the adult intracardiac neurons studied, with a current density of -0.6 pA/pF at -130 mV. I-K(IR) displayed rapid activation kinetics and no time-dependent rectification consistent with the rapidly activating, inward K+ rectifier described in other mammalian autonomic neurons. I-K(IR) was sensitive to changes in external K+, whereby raising the external K+ concentration from 3 to 15 mM shifted the reversal potential by approximately +36 mV. Substitution of external Na+ had no effect on the reversal potential or amplitude of I-K(IR). I-K(IR) density increases as a function of postnatal development in a population of rat intracardiac neurons, which together with a concomitant decrease in I-h may contribute to changes in the modulation of neuronal excitability in adult versus neonatal rat intracardiac ganglia.
Resumo:
Background and Aim: The published literature on alcoholic liver disease (ALD) in Australia lacks a large clinical series out of private practice as distinct from hospital-based hepatology referral units. This series describes the presentation and clinical features of ALD in a consecutive series out of metropolitan private practice in Australia. Methods: A retrospective descriptive study by case-note review found 297 cases of ALD at a Brisbane practice over 20 years. The main outcome measures were: clinical features and stage at presentation, reasons for referral, and the predictive value of aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. Results: Most patients (57.9%) had no symptoms of liver disease and 29 patients (9.8%) had neither symptoms nor signs. Cirrhosis was found in 41% of patients and hepatitis-fibrosis was found in 26% of patients. The male to female (M: F) ratio was 4.7:1. The AST/ALT ratio was not reliably predictive of ALD stage. The average reported daily alcohol intake was 131 g. Females drank less on average and presented a more vigorous clinical picture. Conclusions: This series presents the spectrum of ALD in a metropolitan Australian private practice. Many patients are asymptomatic on presentation. All heavy drinkers should be targeted for early investigation without waiting for volunteered symptoms or abnormal physical signs. The male to female ratio in ALD is higher than hitherto reported. The AST/ALT ratio is not generally applicable in the staging of ALD. The differences from hospital series data suggest the demography and epidemiology of ALD in Australia are incomplete, and further study is warranted. (C) 2001 Blackwell Science Asia Pty Ltd.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
The presence of an intrinsic renin-angiotensin system (RAS) in the rat epididymis has been previously established by showing the expression of several key RAS components, and in particular angiotensinogen, the indispensable element for the intracellular generation of angiotensin II. In this study, the possible involvement of this local epididymal RAS in the testicular effects of chronic hypoxia was investigated. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and by in situ hybridization histochemistry of the rat epididymis were used to show changes in localization and expression of angiotensinogen. Results from RT-PCR analysis demonstrated that chronic hypoxia caused a marked decrease (60%) in the expression of angiotensinogen mRNA, when compared with that in the normoxic epididymis. Western blot analysis demonstrated a less decrease (35%) in the expression of angiotensinogen protein. In situ hybridization histochemistry showed that the reduced angiotensinogen mRNA in chronic hypoxia was specifically localized to the epididymal epithelium from the cauda, corpus and caput regions of the epididymis; a distribution similar to that of normoxic rats. It was concluded that chronic hypoxia decreases the transcriptional and translational expression of angiotensinogen, and thus local formation of angiotensin II, in the rat epididymis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion. Copyright © 2011 Elsevier B.V. All rights reserved
Differential expression and distribution of syndecan-1 and-2 in periodontal wound healing of the rat
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.
Resumo:
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.