970 resultados para Range ecology
Resumo:
Food and feeding, condition factor, breeding periods, growth and size at first maturity of a small pelagic cyprinid Rastrineobola argentea (P.) in Lake Victoria are determined. Fishing gears and methods that have been used in the exploitation of the species and could be harmful to the fishery are outlined. Management measures leading to possible sustainable exploitation of the fishery are suggested. Adult R. argentea feed on zooplankton during daytime. Juveniles feed on planktonic early instars of lakefly larvae. Although the species breeds throughout the year, two breeding peaks were observed during the drier months of August and December January. Least breeding was observed in the rainy months of April-May and October November. Fishes from the open water station at Bugaia showed higher numbers of breeding individuals than those from inshore areas. The mean monthly condition factor of fish from Napoleon Gulf confirmed breeding peaks as obtained from the number of fish with ripe gonads. The species showed a mean instantaneous growth rate (K) of 1.75 and attains length infinity (Lx) of 54mm. Females of the species in these waters show a reduced size at maturity as compared to ten years ago when exploitation of the species was at minimal levels. The males have however not changed much.
Resumo:
Rastrineobola argentea, local name.s Mukene (Uganda) Omena (Kenya) and Dagaa (Tanzania) occurs in lakes Victoria, Kyoga and Nabugabo (Greenwood 1966). Until the decline of the native fishes especially the haplochromines, R. argentea was of little economic importance to the fisheries of these lakes. The stocks of this species have now increased and commercial catches on Lake Victoria account for over 30%. Fishing for R. argentea is currently still restricted to inshore areas and within the fringing islands of Lake Victoria. This fishery is not yet established on Lakes Kyoga and Nabugabo although the species is quite abundant in these lakes (Proude 1963). On moonless nights, kerosene pressure lamps are exposed on the lake to attract the fishes. These fishes are then fished out using fine meshed seine, lampara or lift nets
Resumo:
Prior to introduction of non-native fish species into Lakes Victor i a, Kyoga and Nabugabo, the three lakes suppor ted diverse fish fauna representing 13 families consisting of six cichlid genera and fifteen non-cichlid genera. There were about 50 non-cichlid species and over 300 cichlids consisting of mainly haplochromines (Graham 1929, worthington 1929, Greenwood 1960). Many of the species were commercially and scientifically important and provided a rich variety of protein source to choose from. Following introduction of the Nile perch and several tilapiines species, most of the native species were drastically reduced and some have apparently disappeared. The few remaining species appear to be restricted in distribution due to the presence of the Nile perch. They are mainly confined to refugia such as marginal macrophytes, rocky outcrops and small satellite lakes which are separated from the areas of introduction by swamps
Resumo:
An overview of the biology and ecology of some of the constantly less important commercial species is given below. These included Bagrus docmac, Clarias gariepinus, Protopterus aethiopicus, Labeo victorianus, Barbus spp, Mormyrids, Synodontis spp, and Schilbe intermedius. The stocks of most of these species declined due to over-exploitation and introduction of non-native fishes especially Nile perch. A few of these taxa still survive in the main lake and others in satellite lakes. The current status of these species in the Victoria lake basin is not known but the available information provided some information on some habitat and other requirements of some of these originally important species of the Victoria lake basin.
Resumo:
Many haplochromine cichlids coexisted in Lake Victoria before the upsurge of Nile perch. The introduction of the Nile perch led to depletion of many haplochromines and other fish species in Lake Victoria. The impact of Nile perch predation on haplochromines differed for different haplochromine trophic groups. Yssichromis fusiformis (G) and Yssichromis laparogramma (G) are among the species that have survived in the lake. Yssichromis spp. was studied with the aim of determining their trophic role, food and feeding habits. Samples were collected from Bugaia, Buvuma channel and Napoleon Gulf in the northern part of Lake Victoria. The food of Yssichromis spp. varied with size of fish. Both Y fusiformis and Y laparogramma fed on Copepods, Cladocerans, Chaoborus and Chironomids. Juvenile Yssichromis spp. fed exclusively on zooplankton comprising Cyclopoid copepods, Calanoid copepods and Cladocera. The relative importance of Chironomid larvae and Calanoid copepods was higher in Bugaia than in Buvuma channel while Cyclopoid copepods and Chironomid pupae were relatively less important in Bugaia. The main food items that Yssichromis spp. fed on in Buvuma channel were Chironomid larvae Cyclopoid copepods, Cladocerans and Calanoid copepods. In Napoleon Gulf, fish caught from commercial fishery of Rastrineobola argentea (P) had fed on Chaoborus and Chironomids. Overall, Yssichromis spp. fed on more zooplankton in Buvuma than in Bugaia. Yssichromis spp. and R. argentea are presently the most abundant zooplanktivores in the northern part of Lake Victoria and are playing an important trophic role as major consumers of zooplankton and insect larvae in the foodweb of the lake ecosystem. Yssichromis spp. are bridging the transfer of energy from the lower to the higher trophic levels as secondary consumers. The fishery is still not contributing to the direct conversion of the primary products, the phytoplankton and detritus that were efficiently utilised by the diverse haplochromine trophic groups that existed before the Nile perch boom.
Resumo:
Oreochromis niloticus (the Nile tilapia) and three other ti1apine species: Oreochromis leucostictus, Tilapia zi11ii and T. rendallii were introduced into Lakes Victoria, Kyoga and Nabugabo in 1950s and 1960s. The source and foci of the stockings are given by Welcomme (1966) but the origin of the stocked species was Lake Albert. The Nile tilapia was introduced as a management measure to relieve fishing pressure on the endemic tiapiines and, since it grows to a bigger size, to encourage a return to the use of larger mesh gill nets. Ti1apia zillii was introduced to fill a vacant ,niche of macrophytes which could not be utilised' by the other tilapiines. Tilapia rendallii, and possibly T. leucosticutus could been introduced into these lakes accidently as a consquence of one of the species being tried out for aquaculture. The Nile perch and Nile tilapia have since fully established themselves and presently dominate the commercial fisheries of Lakes Victoria and Kyoga. The original fisheries based on the endemic tilapiines O. escu1entus and o. variabilis have collapsed. It is hypothesized that the ecological and limnological changes that are observed in Lakes Victoria and Kyoga are due to a truncation of the original food webs of the two lakes. Under the changed conditions, O. niloticus to be either playing a stabilizing role or fuelling nutrient turnover in the lakes. Other testable hypotheses point to the possible role of predation by the Nile perch, change in regional climate and hydrology in the lake basins.
Resumo:
Lakes Victoria, Kyoga and Nabugabo had a similar native fish fauna of high species diversity. stocks of most of the native species declined rapidly and some completely disappeared after Nile perch was introduced and became well established. Although, overexploitation of the fish stocks, competition between introduced and native tilapiines and environmental degradation contributed to the reduction in fish stocks, predation by the Nile perch has contributed much to the recent drastic reductions in fish stock and could even drive the stocks to a total collapse. Nile perch is also currently the most important commercial species in Lakes victoria, Kyoga and Nabugabo and the stability of its stocks is important in the overall sustainability of the fisheries of these lakes. The question that was to be examined in this paper was whether the fisheries of Lakes Victoria, Kyogaand Nabugabo would stabilize and sustain production in the presence of high predation pressure by the Nile perch or whether the Nile perch would drive the fish stocks including itself to a collapse. I t was assumed that Nile perch driven changes in Lakes Victoria, Kyoga and Nabugabo would be driven to a level beyond which they would not change further. This would be followed by recovery and stability or the changes would continue to a point of collapse. It was assumed that Lake Albert represented the ideal stable state. The changes in the new habitats expected to be driven through a major change due to Nile perch predation to a stage where there would be no further changes. After this, a feedback mechanism would move the driven variable towards recovery. The variables would then stabilize and oscillate will an amplitude which approximates to what would be recorded in Lake Albert. Alternatively, the changes would proceed to a stage where the fishery would collapse. The specific hypothesis was that fish species composition and diversity, prey selection by the Nile perch and life history characteristics of the Nile perch in the new habitats would change and stabilize
Resumo:
Haplochrmine cichlids were the most abundant taxa in Lakes Victoria, Kyoga and Nabugabo prior to introduction of the Nile perch. As stocks of the introduced predator increased, these taxa were depleted to such an extent that they are now virtually absent from the lake. The haplochromine cichlids played an important role in the ecology of Lakes Victoria, Kyoga and Nabugabo. They occupied virtually all trophic levels in the lake and facilitated an efficient flow of energy through the ecosystem. Their depletion seem to have left much organic matter whose decomposition has contributed to accumulation of dead organic matter which may be contributing to prolonged anoxia in Lake Victoria. The haplochromines formed an important small-scale fishery. Fishermen formerly subsisting on this fishery have been driven out of business because they cannot afford the expensive nets required for Nile perch fishery. In addition to providing a cheap source of fish protein to humans, the species were an important source of Scientific material for students of genetics antd adaptive radiation.
Resumo:
This monitoring survey No. 11 undertaken between 4th and 9th September 2012 is the second one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted.
Resumo:
This chapter brings together some information on the fishes and fisheries of Uganda. It starts with an overview of the biology and ecology of the fishes highlighting those aspects that are important in providing an understanding that can be used to manage the fishes. This is followed by a discussion of the fisheries of the major lakes including the management challenges that have and are facing these lakes.
Resumo:
Lake Albert contributes about 10% to the national fish production. It supports a multi-species fishery based on endemic species. To local fishermen, Lake Albert is a lifeline providing food and income.
Resumo:
The results reported on were from a monitoring survey No.7 undertaken between 4 th and 7th September 2010 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, six monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010 and the present one, in September 2010. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: I. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
Bujagali hydropower dam construction is now completed and a reservoir behind the dam has been created, extending all the way up to Kalange-Makwanzi, an upstream transects. During the 10th monitoring survey-April 2012, a third transect was established in the mid of the reservoir where it runs up to 30 m deep and sampled similarly as at the two original sampling transects, Kalange-Makwanzi and Buyala-Kikubamutwe for comparative purposes. This monitoring survey No. 12 undertaken between 25th and 30th April 2013 is the third one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants, biology and ecology of fishes and food webs, fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness). In the post-construction monitoring surveys, the assessments of algae, zooplankton and benthic macro-invertebrates which had been restrained since April 2008 were also included.
Resumo:
The survey covered by this report was undertaken between 3rd and 7th April 2009 as a follow-up on the during construction surveys. Two pre-construction baseline surveys were undertaken in April 2000 and April 2006. During the construction phase which started in 2007, three surveys including the current one have been undertaken i.e. in September 2007, April 2008 and the present one, in April 2009. Unlike in all previous surveys in which monitoring was conducted at one transect upstream and three downstream transects, in the current survey, two transects, one upstream and the other,downstream of the BHPP were sampled with emphasis on the following aspects: 1. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).