964 resultados para Raman amplifiers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of molecules containing X-H oscillators (X = C, N, O...) has become an effective tool for the study of molecular structure, dynamics, inter and intramolecular interactions, conformational aspects and substituent effects in aliphatic and aromatic compounds. In the present work, the author studied the NIR overtone spectra of some liquid phase organic compounds. The analysis of the CH, NH and OH overtones yielded important structural information about these systems. In an attempt to get information on electronic energy levels, we studied the pulsed Nd:YAG laser induced fluorescence spectra of certain organic compounds. The pulsed laser Raman spectra of some organic compounds are also studied. The novel high resolution technique of near infrared tunable diode laser absorption spectroscopy (TDLAS) is used to record the rotational structure of the second OH overtone spectrum of 2-propanol. The spectral features corresponding to the different molecular conformations could be identified from the high resolution spectrum. The whole work described in this thesis is divided into five chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Màster en Nanociència i Nanotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Màster en Nanociència i Nanotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FT-IR spectrum of quinoline-2-carbaldehyde benzoyl hydrazone (HQb H2O) was recorded and analyzed. The synthesis and crystal structure data are also described. The vibrational wavenumbers were examined theoretically using the Gaussian03 package of programs using HF/6-31G(d) and B3LYP/6-31G(d) levels of theory. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared spectroscopy of the studied molecule. The first hyperpolarizability, infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The changes in the CAN bond lengths suggest an extended p-electron delocalization over quinoline and hydrazone moieties which is responsible for the non-linearity of the molecule

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman and FTIR spectra of [C(NH2)3]2M(SO4)2 ·6H2O (withM= Co, Fe, Ni) were recorded and analysed. The observed spectral bands are assigned in terms of vibrations of guanidinium ions, sulphate groups and water molecules. The analysis shows that the sulphate tetrahedra are distorted from their free state symmetry Td to C1. This is attributed to the presence of hydrogen bonds from water molecules. The order of distortion of the metal oxygen octahedra influenced the distortion of the sulphate tetrahedra. The appearance of 1– 3 modes of water molecules above 3300 cm−1 indicates the presence of weak hydrogen bonds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO nanoflowers were synthesized by the hydrothermal process at an optimized growth temperature of 200 ◦C and a growth/reaction time of 3 h. As-prepared ZnO nanoflowers were characterized by x-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. X-ray diffraction and Raman studies reveal that the as-synthesized flower-like ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase preferentially oriented along the (1 0 1 1) plane. The average length (234–347 nm) and diameter (77–106 nm) of the nanorods constituting the flower-like structure are estimated using scanning electron microscopy studies. The band gap of ZnO nanoflowers is estimated as 3.23 eV, the lowering of band gap is attributed to the flower-like surface morphology and microstructure of ZnO. Room temperature photoluminescence spectrum shows a strong UV emission peak at 392 nm, with a suppressed visible emission related to the defect states, indicating the defect free formation of ZnO nanoflowers that can be potentially used for UV light-emitting devices. The suppressed Raman bands at 541 and 583 cm−1 related to defect states in ZnO confirms that the ZnO nanoflowers here obtained have a reduced presence of defects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å,  = 90°,  = 131.568° and  = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO micro particles in the range 0.4-0.6 μm were synthesized by microwave irradiation method. The XRD analysis reveals that the sample is in the wurtzite phase with orientation along the (101) plane. SAED pattern of the sample reveals the single crystalline nature of the micro grains. TEM images show the formation of cylindrical shaped ZnO micro structures with hexagonal faces. The optical phonon modes were slightly shifted in the Raman spectrum,attributed to the presence of various crystalline defects and laser induced local heating at the grain boundaries. A broad transmission profile was observed in the FTIR spectrum from 1550-3400 cm-1 which falls in the atmospheric transparency window region. PL spectrum centered at 500 nm with a broad band in the region 420-570 nm comprised of different emission peaks attributed to transition between defect levels. Various emission levels in the sample were expliained with a band diagram

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FTIR and Raman spectra of FeClMoO4 single crystal and polycrystalline Na2MoO4, Na2MoO4·2H2O and Na2MoO4·2D2O are recorded and analysed. The band positions for different modes suggest that MoO4 tetrahedron is more distorted in FeClMoO4. The larger splitting observed for the bending modes and partial retention of degeneracy of the asymmetric stretching mode indicate that angular distortion is greater than liner distortion in MoO4 2 ion in FeClMoO4 confirming x-ray data. The non-appearance of the n1 and n2 modes in the IR and partial retention of the degeneracies of various modes show that MoO4 2 ion retains Td symmetry in Na2MoO4. Wavenumber values of the n1 mode indicate that the distortion of MoO4 tetrahedra in the four crystals are in the order FeClMoO4\ Na2MoO4·2H2O\Na2MoO4·2D2O\Na2MoO4. The water bands suggest the presence of two crystallographically distinct water molecules in Na2MoO4·2H2O. They form strong hydrogen bonds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition and evaluation of Indian squid (Loligo duvauceli) mantle, epidermal connective tissue and tentacle is investigated in this current study. It is observed that squid mantle contains 22.2% total protein; 63.5% of the total protein is myofibrillar protein. The unique property of squid myofibrillar protein is its water solubility. Squid mantle contains 12.0% total collagen. Epidermal connective tissue has highest amounts of total collagen (17.8%). SDS-PAGE of total collagen identified high molecular weight α-, β- and γ- sub-chains. Amino acid profile analysis indicates that mantle and tentacle contain essential amino acids. Arginine forms a major portion of mantle collagen (272.5 g/100 g N). Isoleucine, glutamic acid and lysine are other amino acids that are found in significantly high amounts in the mantle. Sulphur containing cystine is deficit in mantle collagen. Papain digest of mantle and epidermal connective tissue is rich in uronic acid, while papain digest, collagenase digest and urea digest of epidermal connective tissue has significant amounts of sialic acid (25.2, 33.2 and 99.8 μmol /100 g, respectively). PAS staining of papain digest, collagenase digest and urea digest also identify the association of hexoses with low molecular weight collagen fragments. Histochemical sectioning also emphasized the localized distribution of collagen in epidermal and dermal region and very sparse fibres traverse the myotome bundles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HINDI