977 resultados para Radiation Oncology
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.
Resumo:
Underpinning current models of the mechanisms of the action of radiation is a central role for DNA damage and in particular double-strand breaks (DSBs). For radiations of different LET, there is a need to know the exact yields and distributions of DSBs in human cells. Most measurements of DSB yields within cells now rely on pulsed-field gel electrophoresis as the technique of choice. Previous measurements of DSB yields have suggested that the yields are remarkably similar for different types of radiation with RBE values less than or equal to1.0. More recent studies in mammalian cells, however, have suggested that both the yield and the spatial distribution of DSBs are influenced by radiation quality. RBE values for DSBs induced by high-LET radiations are greater than 1.0, and the distributions are nonrandom. Underlying this is the interaction of particle tracks with the higher-order chromosomal structures within cell nuclei. Further studies are needed to relate nonrandom distributions of DSBs to their rejoining kinetics. At the molecular level, we need to determine the involvement of clustering of damaged bases with strand breakage, and the relationship between higher-order clustering over sizes of kilobase pairs and above to localized clustering at the DNA level. Overall, these studies will allow us to elucidate whether the nonrandom distributions of breaks produced by high-LET particle tracks have any consequences for their repair and biological effectiveness. (C) 2001 by Radiation Research Society.
Resumo:
Bystander effects, whereby cells that are not directly exposed to ionizing radiation exhibit adverse biological effects, have been observed in a number of experimental systems. A novel stochastic model of the radiation-induced bystander effect is developed that takes account of spatial location, cell killing and repopulation. The ionizing radiation dose- and time-responses of this model are explored, and it is shown to exhibit pronounced downward curvature in the high dose-rate region, similar to that observed in many experimental systems, reviewed in the paper. It is also shown to predict the augmentation of effect after fractionated delivery of dose that has been observed in certain experimental systems. It is shown that the generally intractable solution of the full stochastic system can be considerably simplified by assumption of pairwise conditional dependence that varies exponentially over time. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.
Resumo:
Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. This study investigated the role of changes in calcium levels in bystander responses leading to chromosomal damage in nonirradiated T98G glioma cells and AG01522 fibroblasts that had been either exposed to conditioned medium from irradiated cells or co-cultured with a population where a fraction of cells were individually targeted through the nucleus or cytoplasm with a precise number of microbeam helium-3 particles. After the recipient cells were treated with conditioned medium from T98G or AG01522 cells that had been irradiated through either nucleus or cytoplasm, rapid calcium fluxes were monitored in the nonirradiated recipient cells. Their characteristics were dependent on the source of the conditioned medium but had no dependence on radiation dose. When recipient cells were co-cultured with an irradiated population of either T98G or AG01522 cells, micronuclei were induced in the nonirradiated cells, but this response was eliminated by treating the cells with calcicludine (CaC), a potent blocker of Ca2+ channels. Moreover, both the calcium fluxes and the bystander effect were inhibited when the irradiated T98G cells were treated with aminoguanidine, an inhibitor of nitric oxide synthase (NOS), and when the irradiated AG01522 cells were treated with DMSO, a scavenger of reactive oxygen species (ROS), which indicates that NO and ROS were involved in the bystander responses generated from irradiated T98G and AG01522 cells, respectively. Our findings indicate that calcium signaling may be an early response in radiation-induced bystander effects leading to chromosome damage. (c) 2006 by Radiation Research Society.