879 resultados para RENEWABLE-ENERGY
Resumo:
Small-scale anaerobic digester installation has been a development objective of the Indian government to provide rural households clean fuel. Anaerobic digester installation is heavily subsidised. Depending on caste, the rate of subsidy offered for the smallest system available (1m3) varies between 32.35% and 41.18% of the total installation price. Yet, there are gaps in knowledge regarding the usefulness of such subsidies from a sustainability perspective. A cost-benefit analysis was conducted to evaluate the circumstances required for digester sustainability. The analysis used household data collected from 115 cattle owning households in Odisha, India to evaluate profitability at three levels of subsidy (none, General caste subsidy, and Schedule Caste/Schedule Tribe subsidy). Additional analyses considered the effect of; taking a loan, replacing electric lighting with biogas lighting, and the wealth level of the household. The results indicated that access to subsidy improved profitability. Yet, profitability could be achieved without the use of subsidy. The level of benefit accrued by households was similar independent of wealth. However, the provision of subsidy was essential for ensuring profitability for those households required to take a loan to meet the expense of installation. Such findings highlight the importance of subsidy as a means of including the poor.
Resumo:
The relationships between the four radiant fluxes are analyzed based on a 4 year data archive of hourly and daily global ultraviolet (I(UV)), photosynthetically active-PAR (I(PAR)), near infrared (I(NIR)) and broadband global solar radiation (I(G)) collected at Botucatu, Brazil. These data are used to establish both the fractions of spectral components to global solar radiation and the proposed linear regression models. Verification results indicated that the proposed regression models predict accurately the spectral radiant fluxes at least for the Brazilian environment. Finally, results obtained in this analysis agreed well with most published results in the literature. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Genetic algorithm has been widely used in different areas of optimization problems. Ithas been combined with renewable energy domain, photovoltaic system, in this thesis.To participate and win the solar boat race, a control program is needed and C++ hasbeen chosen for programming. To implement the program, the mathematic model hasbeen built. Besides, the approaches to calculate the boundaries related to conditionhave been explained. Afterward, the processing of the prediction and real time controlfunction are offered. The program has been simulated and the results proved thatgenetic algorithm is helpful to get the good results but it does not improve the resultstoo much since the particularity of the solar driven boat project such as the limitationof energy production
Resumo:
The present paper examines building integrated solar collectors with absorbers of polymeric materials. Efficiency measurements of façade-integrated collectors with non-selective black and spectrally selective coloured absorbers are carried out. The performance of the polymeric absorber was compared with solar glass and polycarbonate twin-wall sheets as collector cover. Simulations demonstrate a high solar fraction for a solar combisystem with façade collectors for a well-insulated house in a Nordic climate. Two examples of house concepts with façade collectors are presented which address a new type of customer than the solar enthusiasts with special interest in renewable energy
Resumo:
PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.
Resumo:
Development of an infrastructure for Brundtland Renewable Energy Network - BREN är ettEuropean Commission Alterner Project med Contract no XVII/4. 1030/Z96-032.Projektet har sitt ursprung i UN rapporten “Our Common Future” 1989. Grundläggande för att nå de mål som rapporten föreslog var att förändra och minska användningen av energi. I Danmark tog man fram en handlingsplan för hur energiförbrukningen skulle kunna minskas “Energi 2000 - Handlingsplan för en bäredygtig udvikling”. De danska och schleswigholstenske energiministrarna överenskom att starta vars ett energisparprojekt i en mindre stad. Projektet kallades “Brundtlandby” och de två första var Toftlund i Sönderjylland och Bredstedt i Nordfriesland. Efter en kort tid anslöt sig ytterligare två tyska städer, Rheinsberg och Viernheim, samt Rajec i Slovakien. Mellan städerna formades ett nätverk för att utbyta information. Nätverket, Brundtland City Project, var inspirerande för de ingående städerna i det fortsatta arbetet med energisparåtgärder. Brundtland City Project presenterades på en internationell konferens “Cities and Energy” i Trondheim, Norge, december 1995. Projektet väckte intresse och det föreslogs att nätverket, som ett pilotprojekt, skulle utvecklas i norra Europa för att senare utökas med andra europeiska länder. En ledningsgrupp tillsattes medrepresentanter från de nordiska länderna.En ansökan sändes till European Commission, Alterner Program, och denna beviljades i juli 1996. Projektet indelades i (9 Activities. Aktivitet 1, var att sammanfatta erfarenheterna av Brundtland City Project i Toftlund, Danmark och Brundtland Cities Nätverket i Sovakien, Tyskland och Danmark. Den nordiska delen startar med Aktivitet 2, vilket var att engagera kommuner/städer i Finland, Norge och Sverige. Som samordnade för den svenska delen utsågs Solar Energy Research Center SERC vid Högskolan Dalarna. Projektet presenterades vid ett seminarium den 30 september för representanter för Borlänge och Falu kommuner. Den 10 december 1996 accepterade de två kommunerna inbjudan att ingå i det nordiska nätverket. Uppgiftslämnare i Borlänge kommun har varit Pelle Helje, Borlänge Energi och i Falu kommun Anders Goop, stadsbyggnadskontoret samt för underlag till Newsletter Jan Kaans, fastighetskontoret.Rapportering till Brundtland Center Danmark av arbetet i Borlänge och Falu kommuner har skett vid tre tillfällen, Aktiviteterna 2-5, 1997-12-16, Aktivitererna 6-7 inkluderande delar av aktiviterna 8-9, 1998-05-03 samt underlag till Newsletter, 1998-07-01. De nordiska rapporterna har sammanställts vid Brundtland Center Danmark för rapportering till European Commission. Gemensamt språk har varit engelska. Efter rapportering av aktiviterna 2 - 5 inbjöds till ett projektmöte och en studiedag vid Brundtland Center den 23 och 24 mars 1998. Det var första tillfället deltagarna i projektet strålade samman och nätverket tog därmed en mera konkret form. Man beslutade också att nästa projektmöte skulle hållas i Borlänge i augusti 1998 med Borlänge Energi och Solar Energy Research Center SERC som organisatörer. Beroende på att Brundtland Centre Danmark upplösts av ekonomiska skäl blev projektmötet i Borlänge inställt.Sammanställning av Final Report, October 1998, har utförts av Esbensen Consultants.Framtida utveckling av nätverketArbetet med Brundtland City Network avses fortsätta som ett “EU Thermie B-project” och nätverket kommer att utökas med fyra nya Brundtlandstäder från Österrike, Tyskland Italien och Storbritanien. Dessutom kommer samhället Putja i Estland att ingå i nätverket men detta financieras av EU-Phare programme.
Resumo:
Development of an infrastructure for Brundtland Renewable Energy Network - BREN is a European Commission Alterner Project with Contract no XVII/4. 1030/Z96-032.The project has its origin in the UN-report “Our Common Future”, 1989. A change in and reduction of the use of energy was fundamental in order to reach the goals which the report proposed. Denmark decided on an action plan on how energy consumption could be reduced “Energi 2000 - Handlingsplan för en bäredygtig udvikling”. The ministries of energy in Denmark and Schleswig Holstein both agreed to start an energy saving project in a smaller town. The project was called “Brundtlandby” and the two first were Toftlund in South Jutland and Bredstedt in North Friesland. After a short period a further two German Cities, Rheinsberg and Viernheim, and Rajec in Slovakia joined the group. A network for the exchange of knowledge and experience between the cities was formed. The network, Brundtland City Project, inspired the participating cities in the continuing work with energy saving measures. The Brundtland City Project was presented at an international conference “Cities and Energy” in Trondheim, Norway,in December 1995. Great interest was shown in the project and it was decided that a network should be developed in northern European countries as a pilot project to be enlarged with other European countries later on. A steering committee was formed with representatives from the nordic countries.An application was sent to the European Commission, Alterner Program, and was approved in Juli 1996. The project was subdivided into nine activities. Activity 1, consisted of summarising the experiences of the Brundtland City Project in Toftlund, Denmark and the Brundtland Cities network in Slovakia, Germany and Denmark. The Scandinavian part started with Activity 2, to engage municipalities/cities in Finland, Norway and Sweden in the project. The Solar Energy Research Center, SERC, Högskolan Dalarna was appointed as co-ordinator for the Swedish part. The project was presented at a seminar on the 30th September for representatives from the municipalities of Borlänge and Falun. On the 10th of December 1996 the two municipalities accepted the invitation to join the Northern network. Pelle Helje, Borlänge Energi, has been informant for the municipality of Borlänge and Anders Goop, Department of Urban Planninginformant for the municipality of Falun with Jan Kaans, Estates department providing information to the basis for the Newsletter.Reports on the work in Borlänge and Falun municipalities have been made to Brundtland Center Denmark on three occasions; Activities 2-5, 16-12-1997, Activities 6-7, including parts of activities 8-9, 03-03-1998, and the basis for the Newsletter, 01-07-1998. The Nordic reports have been compiled at the Brundtland Center Denmark for submission to the European Commission. English has been the common language. After the report of activities 2 - 5 the participants wereinvited to a project meeting and a workshop at Brundtland Center the 23rd and 24th March 1998.This was the first occasion the participants in the project met and the network thus took a moreconcrete form. It also was decided that the next meeting should be in Borlänge in August 1998,with Borlänge Energi and Solar Energy Research Center SERC as organisers. As BrundtlandCentre Denmark was wound up for financial reasons, the project meeting in Borlänge wascancelled.Compilation of the Final Report was carried out by Esbensen Consultants in October 1998Future development of the networkIt is intended to continue the work with the Brundtland City Network as an “EU Thermie Bproject”and the network will be enlarged with the addition of four new Brundtland Cities from Austria, Germany, Italy and Great Britain. In addition the village of Putja in Estonia will join the network but this will be financed by the EU-Phare programme.
Resumo:
This thesis examines prerequisites for wind power diffusion in a county in Sweden that quite recently was concidered to be of interest for electricty production from renewable energy sources. Three different municipalities: Falun, Mora and Orsa in the county of Dalarna are highlighted. Their view on permitting processes of wind power installations are investigated. Other actors, such as exploiters and local citizens are also being analysed. This study shows that the local acceptance was very high when the first wind power parks were built, much thanks to local politicians and local citizens. For the politicians the wind power symbolised a key to a better green society, for the local citizens the wind power meant some economical advantages. The first wind power parks were localised to areas because of good wind conditions and social factors, especially from local communities. However, results from this study shows that the acceptance for wind power the last few years, in generel, has decreased. The local authorities have also been conscious of some negative consequenses from already built wind power parks. As a response they started to add planning tools to the permitting process.
Resumo:
This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.