992 resultados para RECOGNITION ELEMENT
Resumo:
211 p. :il.
Resumo:
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.
Resumo:
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.