993 resultados para RAT CORTICAL ASTROCYTES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is selectively expressed in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor. A diminished activity causes salt-sensitive hypertension. The mechanism of the variable and distinct 11β-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) expression in the cortical collecting duct is poorly understood. Here, we analyzed for the first time whether the 11β-HSD2 expression is modulated by microRNAs (miRNAs). In silico analysis revealed 53 and 27 miRNAs with potential binding sites on human or rat HSD11B2 3'-untranslated region. A reporter assay demonstrated 3'-untranslated region-dependent regulation of human and rodent HSD11B2. miRNAs were profiled from cortical collecting ducts and proximal convoluted tubules. Bioinformatic analyses showed a distinct clustering for cortical collecting ducts and proximal convoluted tubules with 53 of 375 miRNAs, where 13 were predicted to bind to the rat HSD11B2 3'-untranslated region. To gain insight into potentially relevant miRNAs in vivo, we investigated 2 models with differential 11β-HSD2 activity linked with salt-sensitive hypertension. (1) Comparing Sprague-Dawley with low and Wistar rats with high 11β-HSD2 activity revealed rno-miR-20a-5p, rno-miR-19b-3p, and rno-miR-190a-5p to be differentially expressed. (2) Uninephrectomy lowered 11β-HSD2 activity in the residual kidney with differentially expressed rno-miR-19b-3p, rno-miR-29b-3p, and rno-miR-26-5p. In conclusion, miRNA-dependent mechanisms seem to modulate 11β-HSD2 dosage in health and disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isogenic Staphylococcus aureus strains with different capacities to produce sigma(B) activity were analyzed for their ability to attach to fibrinogen- or fibronectin-coated surfaces or platelet-fibrin clots and to cause endocarditis in rats. In comparison to the sigma(B)-deficient strain, BB255, which harbors an rsbU mutation, both rsbU-complemented and sigma(B)-overproducing derivatives exhibited at least five times greater attachment to fibrinogen- and fibronectin-coated surfaces and showed increased adherence to platelet-fibrin clots. No differences in adherence were seen between BB255 and a DeltarsbUVWsigB isogen. Northern blotting analyses revealed that transcription of clfA, encoding fibrinogen-binding protein clumping factor A, and fnbA, encoding fibronectin-binding protein A, were positively influenced by sigma(B). Sigma(B) overproduction resulted in a statistically significant increase in positive spleen cultures and enhanced bacterial densities in both the aortic vegetations and spleens at 16 h postinoculation. In contrast, at 72 h postinoculation, tissues infected with the sigma(B) overproducer had lower bacterial densities than did those infected with BB255. These results suggest that although sigma(B) appears to increase the adhesion of S. aureus to various host cell-matrix proteins in vitro, it has limited effect on pathogenesis in the rat endocarditis model. Sigma(B) appears to have a transient enhancing effect on bacterial density in the early stages of infection that is lost during progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory mechanisms are known to contribute to the pathophysiology of traumatic brain injury (TBI). Since bradykinin is one of the first mediators activated during inflammation, we investigated the role of bradykinin and its receptors in posttraumatic secondary brain damage. We subjected wild-type (WT), B(1)-, and B(2)-receptor-knockout mice to controlled cortical impact (CCI) and analyzed tissue bradykinin as well as kinin receptor mRNA and protein expression up to 48 h thereafter. Brain edema, contusion volume, and functional outcome were assessed 24 h and 7 days after CCI. Tissue bradykinin was maximally increased 2 h after trauma (P<0.01 versus sham). Kinin B(1) receptor mRNA was upregulated up to four-fold 24 h after CCI. Immunohistochemistry showed that B(1) and B(2) receptors were expressed in the brain and were significantly upregulated in the traumatic penumbra 1 to 24 h after CCI. B(2)R(-/-) mice had significantly less brain edema (-51% versus WT, 24 h; P<0.001), smaller contusion volumes ( approximately 50% versus WT 24 h and 7 d after CCI; P<0.05), and better functional outcome 7 days after TBI as compared with WT mice (P<0.05). The present results show that bradykinin and its B(2) receptors play a causal role for brain edema formation and cell death after TBI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The adult rat brain subventricular zone (SVZ) contains proliferative precursors that migrate to the olfactory bulb (OB) and differentiate into mature neurons. Recruitment of precursors constitutes a potential avenue for brain repair. We have investigated the kinetics and cellular specificity of transgene expression mediated by AAV2/1 vectors (i.e., adeno-associated virus type 2 pseudotyped with AAV1 capsid) in the SVZ. Self-complementary (sc) and single-stranded (ss) AAV2/1 vectors mediated efficient GFP expression, respectively, at 17 and 24 hr postinjection. Transgene expression was efficient in all the rapidly proliferating cells types, that is, Mash1(+) precursors (30% of the GFP(+) cells), Dlx2(+) neuronal progenitors (55%), Olig2(+) oligodendrocyte progenitors (35%), and doublecortin-positive (Dcx(+)) migrating cells (40%), but not in the slowly proliferating glial fibrillary acidic protein-positive (GFAP(+)) neural stem cell pool (5%). Because cell cycle arrest by wild-type and recombinant AAV has been described in primary cultures, we examined SVZ proliferative activity after vector injection. Indeed, cell proliferation was reduced immediately after vector injection but was normal after 1 month. In contrast, migration and differentiation of GFP(+) precursors were unaltered. Indeed, the proportion of Dcx(+) cells was similar in the injected and contralateral hemispheres. Furthermore, 1 month after vector injection into the SVZ, GFP(+) cells, found, as expected, in the OB granular cell layer, were mature GABAergic neurons. In conclusion, the rapid and efficient transgene expression in SVZ neural precursors mediated by scAAV2/1 vectors underlines their potential usefulness for brain repair via recruitment of immature cells. The observed transient precursor proliferation inhibition, not affecting their migration and differentiation, will likely not compromise this strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen consumption of collagenase-liberated rat adipocytes was measured by two different techniques: a microspectrophotometric method using hemoglobin as indicator of respiration and a technique using the oxygen electrode. These two completely different techniques gave similar values for oxygen consumption. With the spectrophotometric method, the oxygen consumption of single fat cells was determined. A close positive correlation (r = greater than 0.90) between oxygen consumption and fat cell size was observed in each tissue examined. With the oxygen electrode technique, oxygen consumption of adipocyte suspensions from young (40 days, 180 g) and old (90 days, 480 g) rats was examined. Fat cells of the suspensions were separated into classes of different size by a flotation technique. A significant positive correlation between fat cell size and oxygen consumption was observed in both young (r = 0.88) and old (r = 0.95) rats. However, the slope was much steeper in young rats. At a cell weight of 0.1 microgram the oxygen consumption was 0.364 and 0.086 microL O2/10(6) cells/min-1 in young and old rats, respectively. In the literature, a number of separate metabolic pathways have been found to be related positively to fat cell size and negatively to age. We conclude that these scattered metabolic observations are in agreement with integrated data on energy expenditure as evaluated from oxygen consumption. Estimations of the energy expenditure of adipose tissue indicates that this tissue is responsible for about 1% and 0.5% of the total energy expenditure in young and old rats, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thy-1, a cell adhesion molecule abundantly expressed in mammalian neurons, binds to a beta(3)-containing integrin on astrocytes and thereby stimulates the assembly of focal adhesions and stress fibers. Such events lead to morphological changes in astrocytes that resemble those occurring upon injury in the brain. Extracellular matrix proteins, typical integrin ligands, bind to integrins and promote receptor clustering as well as signal transduction events that involve small G proteins and cytoskeletal changes. Here we investigated the possibility that the cell surface protein Thy-1, when interacting with a beta(3)-containing integrin on astrocytes, could trigger signaling events similar to those generated by extracellular matrix proteins. DI-TNC(1) astrocytes were stimulated with Thy-1-Fc immobilized on beads, and increased RhoA activity was confirmed using an affinity precipitation assay. The effect of various inhibitors on the cellular response was also studied. The presence of Y-27632, an inhibitor of Rho kinase (p160ROCK), a key downstream effector of RhoA, significantly reduced focal adhesion and stress fiber formation induced by Thy-1. Similar effects were obtained when astrocytes were treated with C3 transferase, an inhibitor of RhoA. Alternatively, astrocytes were transfected with an expression vector encoding fusion proteins of enhanced green fluorescent protein with either the Rho-binding domain of Rhotekin, which blocks RhoA function, or the dominant-negative N19RhoA mutant. In both cases, Thy-1-induced focal adhesion formation was inhibited. Furthermore, we observed that RhoA activity after stimulation with soluble Thy-1-Fc molecule was augmented upon further cross-linking using protein A-Sepharose beads. The same was shown by cross-linking beta(3)-containing integrin with anti-beta(3) antibodies. Together, these results indicate that Thy-1-mediated astrocyte stimulation depended on beta(3) integrin clustering and the resulting increase in RhoA activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Diffusion weighted magnetic resonance imaging (MRI) is now widely used in human brain diagnosis.1 To date molecular mechanisms underlying changes in Apparent Diffusion Coefficient (ADC) signals remain poorly understood. AQP4, localized to astrocytes, is one of the most highly expressed cerebral AQPs.2 AQP4 is involved in water movement within the cell membrane of cultured astrocytes.3 We hypothesize that AQP4 contributes to water diffusion and underlying ADC values in normal brain. Methods: We used an RNA interference (RNAi) protocol in vivo, to acutely knockdown expression of AQP4 in rat brain and to determine whether this was associated with changes in brain ADC values using MRI protocols as previously described.4 RNAi was performed using specific small interference RNA (siRNA) against AQP4 (siAQP4) and a non-targeted-siRNA (siGLO) as a control. The specificity and efficiency of the siAQP4 were first tested in vitro in astrocyte and hippocampal slice cultures. In vivo, siRNAs were injected into the rat cortex 3d prior to MRI acquisition and AQP4 was assessed by western blot (n=4) and immunohistochemistry (n=6). Histology was performed on adjacent slices. Results: siAQP4 application on primary astrocyte cultures induced a 76% decrease in AQP4 expression after 4 days. In hippocampal slice cultures; we also found a significant decrease in AQP4 expression in astrocytes after siAQP4. In vivo, injection of non-targeted siRNA (siGLO) tagged with CY3 allowed us to show that GFAP positive cells (astrocytes) were positively stained with CY3-siGLO, showing efficient transfection. Western blot and immunohistochemical analysis showed that siAQP4 induced a ~30% decrease in AQP4 expression without modification of tissue properties or cell death. After siAQP4 treatment, a significant decrease in ADC values (~50%) were observed without altered of T2 values. Conclusions: Together these results suggest that AQP4 reduces water diffusion through the astrocytic plasma membrane and decreases ADC values. Our findings demonstrate for the first time that astrocytic AQP4 contributes significantly to brain water diffusion and ADC values in normal brain. These results open new avenues to interpretation of ADC values under normal physiological conditions and in acute and chronic brain injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of tripartite synapse suggests that astrocytes make up a functional synapse with pre- and postsynaptic neuronal elements to modulate synaptic transmission through the regulated release of neuromodulators called gliotransmitters. Release of gliotransmitters such as glutamate or D-serine has been shown to depend on Ca21-dependent exocytosis. However, the origin (cytosolic versus vesicular) of the released gliotransmitter is still a matter of debate. The existence of Ca21-regulated exocytosis in astrocytes has been questioned mostly because the nature of secretory organelles which are loaded with gliotransmitters is unknown. Here we show the existence of a population of vesicles that uptakes and stores glutamate and D-serine in astrocytes which are present in situ. Immunoisolated glial organelles expressing synaptobrevin 2 (Sb2) display morphological and biochemical features very similar to synaptic vesicles. We demonstrate that these organelles not only contain and uptake glutamate but also display a glia-specific transport activity for D-serine. Furthermore, we report that the uptake of D-serine is energized by a H1-ATPase present on the immunoisolated vesicles and that cytosolic chloride ions modulate the uptake of D-serine. Finally, we show that serine racemase (SR), the synthesizing enzyme for D-serine, is anchored to the membrane of glial organelles allowing a local and efficient concentration of the gliotransmitter to be transported. We conclude that vesicles in astrocytes do exist with the goal to store and release D-serine, glutamate and most likely other neuromodulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes have traditionally been considered ancillary, satellite cells of the nervous system. However, it is a very recent acquisition that glial cells generate signaling loops which are integral to the brain circuitry and participate, interactively with neuronal networks, in the processing of information. Such a conceptual breakthrough makes this field of investigation one of the hottest in neuroscience, as it calls for a revision of past theories of brain function as well as for new strategies of experimental exploration of brain function. Glial cells are electrically not excitable, and it was only the use of optical recording techniques together with calcium sensitive dyes, that allowed the chemical excitability of glial cells to become apparent. Studies using these new techniques have shown for the first time that glial cells are activated by surrounding synaptic activity and translate neuronal signals into their own calcium code. Intracellular calcium concentration([Ca2+]i) elevations in glial cells have then shown to underlie spatial transfer of information in the glial network, accompanied by release of chemical transmitters (gliotransmitters) such as glutamate and back-signaling to neurons. As a consequence, optical imaging techniques applied to cell cultures or intact tissue have become a state-of-the-art technology for studying glial cell signaling. The molecular mechanisms leading to release of "gliotransmitters," especially glutamate, from glia are under debate. Accumulating evidence clearly indicates that astrocytes secrete numerous transmitters by Ca(2+)-dependent exocytosis. This review will discuss the mechanisms underlying the release of chemical transmitters from astrocytes with a particular emphasis to the regulated exocytosis processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.