953 resultados para Quasi-periodic Multilayers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tanulmány célja, hogy értelmezze a globális gazdaság alapvető fontosságú építőelemét, az üzleti hálózatot, majd megvizsgálja annak felépítését és működésének főbb vezérlőelveit. Először az alapfogalmak – üzleti hálózat, ellátási lánc és ellátási háló – meghatározására és azok felépítésének bemutatására kerül sor. Ezt követően a cikk röviden ismerteti, hogy melyek voltak azok a vállalati gazdálkodás környezetében végbement változások, melyek a gazdaság hálózatosodását elősegítették és ennek kapcsán elvezettek az üzleti hálózatok versenyképességben játszott szerepének erősödéséhez. A szerző ugyanakkor bemutatja a kialakuló új gazdasági modell, az ún. hálózati gazdaság működési modelljének lényeges új tulajdonságait. A tanulmány ezután ismerteti az üzleti hálózat – s ezen belül az ellátási lánc – működtetésében meghatározó koordinációs mechanizmusokban megfigyelhető markáns változásokat. Végül részletesen ismerteti az üzleti hálózat két fő építőelemét: a hálózatot alkotó üzleti egységeknek, illetve a közöttük kialakuló kapcsolatoknak az alapvető típusait. ________ The aim of the paper is to present and interpret the basic building element of global business: the business network, its structure and operation. First basic terms – network, supply chain, supply network – are defined and described, than those changes are introduced that played significant role in increasing their importance. Characteristics of the new network economy are presented; especially changes in the coordination mechanism between cooperating parties in the network are demonstrated. Finally the two building blocks of global business networks: (i) nodes (business units) and (ii) threads (partnerships) are described in details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Az intertemporális döntések fontos szerepet játszanak a közgazdasági modellezésben, és azt írják le, hogy milyen átváltást alkalmazunk két különböző időpont között. A közgazdasági modellezésben az exponenciális diszkontálás a legelterjedtebb, annak ellenére, hogy az empirikus vizsgálatok alapján gyenge a magyarázó ereje. A gazdaságpszichológiában elterjedt általánosított hiperbolikus diszkontálás viszont nagyon nehezen alkalmazható közgazdasági modellezési célra. Így tudott gyorsan elterjedni a kvázi-hiperbolikus diszkontálási modell, amelyik úgy ragadja meg a főbb pszichológiai jelenségeket, hogy kezelhető marad a modellezés során. A cikkben azt állítjuk, hogy hibás az a megközelítés, hogy hosszú távú döntések esetén, főleg sorozatok esetén helyettesíthető a két hiperbolikus diszkontálás egymással. Így a hosszú távú kérdéseknél érdemes felülvizsgálni a kvázi-hiperbolikus diszkontálással kapott eredményeket, ha azok az általánosított hiperbolikus diszkontálási modellel való helyettesíthetőséget feltételezték. ____ Intertemporal choice is one of the crucial questions in economic modeling and it describes decisions which require trade-offs among outcomes occurring in different points in time. In economic modeling the exponential discounting is the most well known, however it has weak validity in empirical studies. Although according to psychologists generalized hyperbolic discounting has the strongest descriptive validity it is very complex and hard to use in economic models. In response to this challenge quasi-hyperbolic discounting was proposed. It has the most important properties of generalized hyperbolic discounting while tractability remains in analytical modeling. Therefore it is common to substitute generalized hyperbolic discounting with quasi-hyperbolic discounting. This paper argues that the substitution of these two models leads to different conclusions in long term decisions especially in the case of series; hence all the models that use quasi-hyperbolic discounting for long term decisions should be revised if they states that generalized hyperbolic discounting model would have the same conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power (SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasiorthogonal space-time block code (QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure full diversity and maximize the QOSTBC's minimum coding gain distance. Simulation results show that by using QOSTBCs along with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios (SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those using conventional modulation formats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'elaborato fornisce una introduzione alla funzione di Wigner, ovvero una funzione di fase che gioca un ruolo chiave in alcuni ambiti della fisica come l'ottica quantistica. Nel primo capitolo viene sviluppato sommariamente l'apparato matematico-fisico della quantizzazione di Weyl e quindi introdotta l'omonima mappa di quantizzazione tra funzioni di fase ed operatori quantistici. Nella seconda parte si delinea la nozione di distribuzione di quasi-probabilit\`a e si danno alcune importanti esemplificazioni della funzione di Wigner per gli autostati dell'oscillatore armonico. Per finire l'ultimo capitolo tratteggia il panorama sperimentale all'interno del quale la funzione di Wigner viene utilizzata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study wave propagation, dispersion relations, and energy relations for linear elastic periodic systems are analyzed. In particular, the dispersion relations for monoatomic chain of infinite dimension are obtained analytically by writing the Block-type wave equation for a unit cell in order to capture the dynamic behavior for chains under prescribed vibration. By comparing the discretized model (mass-spring chain) with the solid bar system, the nonlinearity of the dispersion relation for chain indicates that the periodic lattice is dispersive in contrast to the continuous rod, which is non dispersive. Further investigations have been performed considering one-dimensional diatomic linear elastic mass-spring chain. The dispersion relations, energy velocity, and group velocity have been derived. At certain range of frequencies harmonic plane waves do not propagate in contrast with monoatomic chain. Also, since the diatomic chain considered is a linear elastic chain, both of the energy velocity and the group velocity are identical. As long as the linear elastic condition is considered the results show zero flux condition without residual energy. In addition, this paper shows that the diatomic chain dispersion relations are independent on the unit cell scheme. Finally, an extension for the study covers the dispersion and energy relations for 2D- grid system. The 2x2 grid system show a periodicity of the dispersion surface in the wavenumber domain. In addition, the symmetry of the surface can be exploited to identify an Irreducible Brillouin Zone (IBZ). Compact representations of the dispersion properties of multidimensional periodic systems are obtained by plotting frequency as the wave vector’s components vary along the boundary of the IBZ, which leads to a widely accepted and effective visualization of bandgaps and overall dispersion properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments The financial support of the part of this research by The Royal Society, The Royal Academy of Engineering and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments The financial support of the part of this research by The Royal Society, The Royal Academy of Engineering and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding This work was supported by the Ministry of Education , Nigeria for financial support through the TETFUND scholarship 55 scheme; CSIR [grant number 03(1264)/12/EMR-II].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limit-periodic (LP) structures exhibit a type of nonperiodic order yet to be found in a natural material. A recent result in tiling theory, however, has shown that LP order can spontaneously emerge in a two-dimensional (2D) lattice model with nearest-and next-nearest-neighbor interactions. In this dissertation, we explore the question of what types of interactions can lead to a LP state and address the issue of whether the formation of a LP structure in experiments is possible. We study emergence of LP order in three-dimensional (3D) tiling models and bring the subject into the physical realm by investigating systems with realistic Hamiltonians and low energy LP states. Finally, we present studies of the vibrational modes of a simple LP ball and spring model whose results indicate that LP materials would exhibit novel physical properties.

A 2D lattice model defined on a triangular lattice with nearest- and next-nearest-neighbor interactions based on the Taylor-Socolar (TS) monotile is known to have a LP ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. Surprisingly, even when the strength of the next-nearest-neighbor interactions is zero, in which case there is a large degenerate class of both crystalline and LP ground states, a slow quench yields the LP state. The first study in this dissertation introduces 3D models closely related to the 2D models that exhibit LP phases. The particular 3D models were designed such that next-nearest-neighbor interactions of the TS type are implemented using only nearest-neighbor interactions. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case.

In the second study, we investigate systems with physical Hamiltonians based on one of the 2D tiling models with the goal of stimulating attempts to create a LP structure in experiments. We explore physically realizable particle designs while being mindful of particular features that may make the assembly of a LP structure in an experimental system difficult. Through Monte Carlo (MC) simulations, we have found that one particle design in particular is a promising template for a physical particle; a 2D system of identical disks with embedded dipoles is observed to undergo the series of phase transitions which leads to the LP state.

LP structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. In the third section of this dissertation, we study a ball and spring model with a LP pattern of spring stiffnesses and identify a set of extended modes with arbitrarily low participation ratios, a situation that appears to be unique to LP systems. The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice constants. By studying periodic approximants to the LP structure, we present numerical evidence for the existence of such modes, and we give a heuristic explanation of their structure.