955 resultados para Published fields
Resumo:
Techniques for the coherent generation and detection of electromagnetic radiation in the far infrared, or terahertz, region of the electromagnetic spectrum have recently developed rapidly and may soon be applied for in vivo medical imaging. Both continuous wave and pulsed imaging systems are under development, with terahertz pulsed imaging being the more common method. Typically a pump and probe technique is used, with picosecond pulses of terahertz radiation generated from femtosecond infrared laser pulses, using an antenna or nonlinear crystal. After interaction with the subject either by transmission or reflection, coherent detection is achieved when the terahertz beam is combined with the probe laser beam. Raster scanning of the subject leads to an image data set comprising a time series representing the pulse at each pixel. A set of parametric images may be calculated, mapping the values of various parameters calculated from the shape of the pulses. A safety analysis has been performed, based on current guidelines for skin exposure to radiation of wavelengths 2.6 µm–20 mm (15 GHz–115 THz), to determine the maximum permissible exposure (MPE) for such a terahertz imaging system. The international guidelines for this range of wavelengths are drawn from two U.S. standards documents. The method for this analysis was taken from the American National Standard for the Safe Use of Lasers (ANSI Z136.1), and to ensure a conservative analysis, parameters were drawn from both this standard and from the IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (C95.1). The calculated maximum permissible average beam power was 3 mW, indicating that typical terahertz imaging systems are safe according to the current guidelines. Further developments may however result in systems that will exceed the calculated limit. Furthermore, the published MPEs for pulsed exposures are based on measurements at shorter wavelengths and with pulses of longer duration than those used in terahertz pulsed imaging systems, so the results should be treated with caution.
Resumo:
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
We present a new approach that allows the determination and refinement of force field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on tight coupling between experimentally derived structure factors and computer modelling. By separating the potential into terms representing respectively bond stretching, angle bending and torsional rotation and by treating each of them separately, the various potential parameters are extracted directly from experiment. The procedure is illustrated on molten polytetrafluoroethylene.
Resumo:
We present a new approach that allows the determination of force-field parameters for the description of disordered macromolecular systems from experimental neutron diffraction data obtained over a large Q range. The procedure is based on a tight coupling between experimentally derived structure factors and computer modelling. We separate the molecular potential into non-interacting terms representing respectively bond stretching, angle bending and torsional rotation. The parameters for each of the potentials are extracted directly from experimental data through comparison of the experimental structure factor and those derived from atomistic level molecular models. The viability of these force fields is assessed by comparison of predicted large-scale features such as the characteristic ratio. The procedure is illustrated on molten poly(ethylene) and poly(tetrafluoroethylene).
Resumo:
Rats and mice have traditionally been considered one of the most important pests of sugarcane. However, "control" campaigns are rarely specific to the target species, and can have an effect on local wildlife, in particular non-pest rodent species. The objective of this study was to distinguish between rodent species that are pests and those that are not, and to identify patterns of food utilization by the rodents in the sugarcane crop complex. Within the crop complex, subsistence crops like maize, sorghum, rice, and bananas, which are grown alongside the sugarcane, are also subject to rodent damage. Six native rodent species were trapped in the Papaloapan River Basin of the State of Veracruz; the cotton rat (Sigmodon hispidus), the rice rat (Oryzomys couesi), the small rice rat (O. chapmani), the white footed mouse (Peromyscus leucopus), the golden mouse (Reithrodontomys sumichrasti), and the pigmy mouse (Baiomys musculus). In a stomach content analysis, the major food components for the cotton rat, the rice rat and the small rice rat were sugarcane (4.9 to 30.1 %), seed (2.7 to 22.9%), and vegetation (0.9 to 29.8%); while for the golden mouse and the pigmy mouse the stomach content was almost exclusively seed (98 to 100%). The authors consider the first three species to be pests of the sugarcane crop complex, while the last two species are not.
Resumo:
The fascinating idea that tools become extensions of our body appears in artistic, literary, philosophical, and scientific works alike. In the last fifteen years, this idea has been re-framed into several related hypotheses, one of which states that tool use extends the neural representation of the multisensory space immediately surrounding the hands (variously termed peripersonal space, peri-hand space, peri-cutaneous space, action space, or near space). This and related hypotheses have been tested extensively in the cognitive neurosciences, with evidence from molecular, neurophysiological, neuroimaging, neuropsychological, and behavioural fields. Here, I briefly review the evidence for and against the hypothesis that tool use extends a neural representation of the space surrounding the hand, concentrating on neurophysiological, neuropsychological, and behavioural evidence. I then provide a re-analysis of data from six published and one unpublished experiments using the crossmodal congruency task to test this hypothesis. While the re-analysis broadly confirms the previously-reported finding that tool use does not literally extend peripersonal space, the overall effect-sizes are small and statistical power is low. I conclude by questioning whether the crossmodal congruency task can indeed be used to test the hypothesis that tool use modifies peripersonal space.
Resumo:
Purpose – The paper aims to present the findings of a “situation review” of the Energy Performance of Buildings Directive (EPBD), focusing on energy performance certificates (EPCs) to highlight areas of specific importance for the UK property investment community. The paper is based on research commissioned by the Investment Property Forum (IPF) and funded through the IPF Research Programme (2006-2009). Design/methodology/approach – Interviews were undertaken with experts from the fields of property investment and building engineering. The interviews were undertaken with to identify: the current knowledge of EPCs in the property investment sector; key issues with practical implementation of the legislation; and perceptions of the potential impacts of legislation, particularly in relation to value stakeholder and behaviour. Findings – The paper finds that, although the regulations have been published, there is still a need for clarification in the marketplace with regard to some of the detail of regulations and the certification process. The following areas are of most concern to property investors: costs of surveys; potential difficulties with the process; and a shortage of assessors. With respect to these impacts it is becoming clear that investors who have not yet started considering the EPBD and its requirements within their strategy are likely to face difficulties in the short term. The most significant value-related impacts of EPBD are expected to be value differentiation of properties and “price chipping” against the rental or capital value of the property, where an occupier or potential purchaser will use the recommendations contained within an EPC to force a reduction in value. The latter is expected to emerge in the short term, whereas the former is expected to be realised over the medium to long term. Both these impacts have potentially significant implications for property investment holdings and also future investment behaviour.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
Norms are a set of rules that govern the behaviour of human agent, and how human agent behaves in response to the given certain conditions. This paper investigates the overlapping of information fields (set of shared norms) in the Context State Transition Model, and how these overlapping fields may affect the choices and actions of human agent. This paper also includes discussion on the implementation of new conflict resolution strategies based on the situation specification. The reasoning about conflicting norms in multiple information fields is discussed in detail.)