889 resultados para Proximal algorithms
Resumo:
An important aspect in manufacturing design is the distribution of geometrical tolerances so that an assembly functions with given probability, while minimising the manufacturing cost. This requires a complex search over a multidimensional domain, much of which leads to infeasible solutions and which can have many local minima. As well, Monte-Carlo methods are often required to determine the probability that the assembly functions as designed. This paper describes a genetic algorithm for carrying out this search and successfully applies it to two specific mechanical designs, enabling comparisons of a new statistical tolerancing design method with existing methods. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The progression of renal disease correlates strongly with hypertension and the degree of proteinuria, suggesting a link between excessive Na+ reabsorption and exposure of the proximal tubule to protein. The present study investigated the effects of albumin on cell growth and Na+ uptake in primary cultures of human proximal tubule cells (PTC). Albumin (1.0 mg/ml) increased cell proliferation to 134.1 +/- 11.8% (P < 0.001) of control levels with no change in levels of apoptosis. Exposure to 0.1 and 1.0 mg/ml albumin increased total Na-22(+) uptake to 119.1 &PLUSMN; 6.3% (P = 0.005) and 115.6 &PLUSMN; 5.3% (P < 0.006) of control levels, respectively, because of an increase in Na+/H+ exchanger isoform 3 (NHE3) activity. This was associated with an increase in NHE3 mRNA to 161.1 +/- 15.1% (P < 0.005) of control levels in response to 0.1 mg/ml albumin. Using confocal microscopy with a novel antibody raised against the predicted extracellular NH2 terminus of human NHE3, we observed in nonpermeabilized cells that exposure of PTC to albumin (0.1 and 1.0 mg/ml) increased NHE3 at the cell surface to 115.4 &PLUSMN; 2.7% (P < 0.0005) and 122.4 +/- 3.7% (P < 0.0001) of control levels, respectively. This effect was paralleled by significant increases in NHE3 in the subplasmalemmal region as measured in permeabilized cells. These albumin-induced increases in expression and activity of NHE3 in PTC suggest a possible mechanism for Na+ retention in response to proteinuria.
Resumo:
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.
Resumo:
Introduction/Purpose: The role of impact loading activity on bone mass is well established; however, there are little data on the effects of exercise on bone geometry and indices of bone strength. The primary purpose of this study was to compare indices of bone strength at the proximal femur (PF) between elite premenarcheal gymnasts (N = 30) and age-matched controls (N = 30). Methods: Structural properties of the proximal femur were derived from the hip analyses program and included measurement of subperiosteal width, endosteal diameter, cross-sectional area, bone mineral density, cross-section moment of inertia (CSMI), and section modulus (Z). These parameters were measured for two regions of the PF: the narrow neck (NN), and the shaft (S). In addition, a strength index (S-SI) was calculated at the shaft by dividing the Z at the shaft by the femur length. A secondary purpose was to compare bone mineral content (BMC) values at the total body, lumbar spine, and three sites at the PF (neck, trochanter, and total) between the groups. All dependent values were compared adjusting for height and weight using an ANCOVA procedure and for relative lean body mass post hoc. Results: The gymnasts had significantly greater size-adjusted strength indices (CSMI, Z, and SI) at the NN and S. Gymnasts also had significantly greater size-adjusted BMC at all sites investigated. However, these differences disappeared when adjusted for relative lean body mass. Conclusion: When adjusted for body size, gymnasts had significantly greater indices of both axial strength and bending strength at the NN region of the PF and S, as well as a greater bone SI at the femoral shaft. These differences may be related to greater relative lean body mass attained in gymnastics training.
Resumo:
Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.
Resumo:
Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.
Resumo:
Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.
Resumo:
Gray's Reinforcement Sensitivity Theory (RST) consists of the Behavioural Activation System (BAS) which is the basis of Impulsivity, and Behavioural Inhibition System (BIS) which is the basis of Anxiety. In this study, Impulsivity and Anxiety were used as distal predictors of attitudes to religion in the prediction of three religious dependent variables (Church attendance, Amount of prayer, and Importance of church). We hypothesised that Impulsivity would independently predict a Rewarding attitude to the Church and that Anxiety would independently predict an Anxious attitude to the church, and that these attitudes would be proximal predictors of our dependent variables. Moreover, we predicted that interactions between predictors would be proximal. Using structural equation modelling, data from 400 participants supported the hypotheses. We also tested Eysenck's personality scales of Extraversion and Neuroticism and found a key path of the structural equation model to be non-significant. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.