905 resultados para Protein-i


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 167 sheep belonging to the Estonian whiteheaded mutton, Estonian blackheaded mutton, Lithuanian coarsewool native, Lithuanian blackface and Latvian darkheaded mutton breeds, and a population of sheep kept isolated on the Estonian island of Ruhnu, were sequence-analysed for polymorphisms in the prion protein (PrP) gene, to determine their genotype and the allele frequencies of polymorphisms in PrP known to confer resistance to scrapie. A 939 base pair fragment of exon 3 from the PrP gene was amplified by pcr and analysed by direct sequencing. For animals showing polymorphism at two nucleotide positions, both haplotypes of these double-heterozygous genotypes were further verified by pcr cloning and sequence analysis. Known polymorphisms were observed at codons 136, 154 and 171, and six different haplotypes (arr, ahq, arh, ahr, arq and vrq) were determined. On the basis of these polymorphisms, the six populations of sheep possessed the resistant arr haplotype at different frequencies. The high-risk arq haplotype occurred in high frequencies in all six populations, but vrq, the haplotype carrying the highest risk, occurred at low frequencies and in only three of the populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions have been explained by the hapten concept, according to which a small chemical compound is too small to be recognized by the immune system. Only after covalently binding to an endogenous protein the immune system reacts to this so called hapten-carrier complex, as the larger molecule (protein) is modified, and thus immunogenic for B and T cells. Consequently, a B and T cell immune response might develop to the drug with very heterogeneous clinical manifestations. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the MHC-peptide complex in order to trigger an immune response. Rather, some drugs may bind directly and reversibly to immune receptors like the major histocompatibility complex (MHC) or the T cell receptor (TCR), thereby stimulating the cells similar to a pharmacological activation of other receptors. This concept has been termed pharmacological interaction with immune receptors the (p-i) concept. While the exact mechanism is still a matter of debate, non-covalent drug presentation clearly leads to the activation of drug-specific T cells as documented for various drugs (lidocaine, sulfamethoxazole (SMX), lamotrigine, carbamazepine, p-phenylendiamine, etc.). In some patients with drug hypersensitivity, such a response may occur within hours even upon the first exposure to the drug. Thus, the reaction to the drug may not be due to a classical, primary response, but rather be mediated by stimulating existing, pre-activated, peptide-specific T cells that are cross specific for the drug. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the peculiar nature of many drug hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Anaplasma phagocytophilum (formerly known as the human granulocytic ehrlichia, Ehrlichia equi and Ehrlichia phagocytophila) is an obligate intracellular organism causing clinical disease in humans and various species of domestic animals. OBJECTIVES: The objectives of this investigation were to sequence and clone the major surface protein 5 (MSP5) of A phagocytophilum and to evaluate the suitability of this antigen in the serologic diagnosis of anaplasmosis in humans and dogs. METHODS: The msp5 gene of A phagocytophilum was sequenced, cloned, and expressed in Escherichia coli. The predicted amino acid sequence homology of the various MSP5/major antigenic protein 2 orthologs was compared among various Anaplasma and Ehrlichia species. Recombinant MSP5 of A phagocytophilum was used in an ELISA to detect antibodies in serum samples from humans and dogs infected with the organism. RESULTS: Serum samples from 104 individuals previously diagnosed with A phagocytophilum infection, as well as samples from clinically healthy humans, were tested. In addition, multiple samples from 4 dogs experimentally infected with 2 different geographic isolates of A phagocytophilum and 5 dogs naturally infected with a Swiss isolate were tested using ELISA. Using this group of immunofluorescent antibody test-positive and immunofluorescent antibody test-negative samples, we found the overall agreement between assays to be >90%. CONCLUSIONS: These results indicate that recombinant MSP5 has potential for use as a diagnostic test antigen to detect infection with A phagocytophilum in both dogs and humans. However, sequence similarities among orthologs of MSP5 in related species of anaplasma and ehrlichia suggest that cross-reactivity among these pathogens is likely if the entire peptide is used as a test antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glanzmann's thrombasthenia (GT) arises from a qualitative or quantitative defect in the GPIIb-IIIa complex (integrin alphaIIbbeta3), the mediator of platelet aggregation. We describe a patient in whom clinical and laboratory findings typical of type I GT were found together with a second pathology involving neurological and other complications symptomatic of tuberous sclerosis. Analysis of platelet proteins by Western blotting revealed trace amounts of normally migrating GPIIb and equally small amounts of GPIIIa of slightly slower than normal migration. Flow cytometry confirmed a much decreased binding to platelets of monoclonal antibodies to GPIIb, GPIIIa or GPIIb-IIIa, and an antibody to the alphav subunit also showed decreased binding. Nonradioactive PCR single-strand conformation polymorphism analysis followed by direct sequencing of PCR-amplified DNA fragments showed a homozygous point mutation (T to C) at nucleotide 1722 of GPIIIa cDNA and which led to a Cys542-->Arg substitution in the GPIIIa protein. The mutation gave rise to a HinP1 I restriction site in exon 11 of the GPIIIa gene and allele-specific restriction enzyme analysis of family members confirmed that a single mutated allele was inherited from each parent. This amino acid substitution presumably changes the capacity for disulphide bond formation within the cysteine-rich core region of GPIIIa and its study will provide new information on GPIIb-IIIa and alphavbeta3 structure and biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NcMIC4 is a Neospora caninum microneme protein that has been isolated and purified on the basis of its unique lactose-binding properties. We have shown that this protein binds to galactosyl residues of lactose; antibodies directed against NcMIC4 inhibit host cell interactions in vitro, thus making it a vaccine candidate. Because of this feature, NcMIC4 was first purified on a larger scale in its native, functionally active form using lactose-agarose affinity chromatography. Second, NcMIC4 was expressed in Escherichia coli as a histidine-tagged recombinant protein (recNcMIC4) and purified through Ni-affinity chromatography. Third, NcMIC4 cDNA was cloned into the mammalian pcDNA3.1 DNA vector and expression was confirmed upon transfection of Vero cells in vitro. For vaccination studies, we employed the murine cerebral infection model based on C57Bl/6 mice, employing experimental groups of 10 mice each. Two groups were injected intraperitoneally with purified native NcMIC4 and recNcMIC4, respectively, employing RIBI adjuvant. The third group was vaccinated intramuscularly with pcDNA-NcMIC4. Control groups included an infection control, an adjuvant control, and a pcDNA3.1 control group. Following 3 injections at 4-wk intervals, mice were challenged by i.p. inoculation of 2 x 10(6) N. caninum tachyzoites (Nc-1 isolate). During the course of parasite challenge (3 wk), mice from the 3 different test groups showed varying degrees of symptoms bearing a semblance to neosporosis, i.e., walking disorder, rounded back, apathy, and paralysis of the hind limbs. Control groups showed no symptoms at all. Most notably, vaccination with pcDNA-MIC4 proved antiprotective, with 60% of mice succumbing to infection within 3 wk, and all mice lacking a measurable anti-NcMIC4 IgG response. NcMIC4 in its native form elicited a substantial humoral IgG1 immune response and a reduction in cerebral parasite load compared to the controls, but 20% of mice succumbed to infection. Vaccination with recNcMIC4 also resulted in 20% of mice dying; however, in this group, cerebral parasite load was similar to the controls, and recNcMIC4 vaccination elicited a mixed IgG1/IgG2 response. In conclusion, vaccines based on NcMIC4, especially pcDNA-NcMIC4, render mice more susceptible to cerebral disease upon challenge with N. caninum tachyzoites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major surface protein 5 (Msp5) of Anaplasma marginale is highly conserved in the genus Anaplasma and the antigen used in a commercially available competitive enzyme-linked immunosorbent assay (cELISA) for serologic identification of cattle with anaplasmosis. This study analyzes the degrees of conservation of Msp5 among various isolates of Anaplasma phagocytophilum and the extent of serologic cross-reactivity between recombinant Msp5 (rMsp5) of Anaplasma marginale and A. phagocytophilum. The msp5 genes from various isolates of A. phagocytophilum were sequenced and compared. rMsp5 proteins of A. phagocytophilum and A. marginale were used separately in an indirect ELISA to detect cross-reactivity in serum samples from humans and dogs infected with A. phagocytophilum and cattle infected with A. marginale. Serum samples were also tested with a commercially available competitive ELISA that uses monoclonal antibody ANAF16C1. There were 100% sequence identities in the msp5 genes among all of the A. phagocytophilum isolates from the United States and a horse isolate from Sweden. Sheep isolates from Norway and dog isolates from Sweden were 99% identical to one another but differed in 17 base pairs from the United States isolates and the horse isolate. Serologic cross-reactivity was identified when serum samples from cattle infected with A. marginale were reacted with rMsp5 of A. phagocytophilum and when serum samples from humans and dogs infected with A. phagocytophilum were reacted with rMsp5 of A. marginale in an indirect-ELISA format. Serum samples from dogs or humans infected with A. phagocytophilum did not cross-react with rMsp5 of A. marginale when tested with the commercially available cELISA. These results suggest that rMsp5 of A. phagocytophilum is highly conserved among United States and European isolates and that serologic distinction between A. phagocytophilum and A. marginale infections cannot be accomplished if rMsp5 from either organism is used in an indirect ELISA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation of the subarachnoid and ventricular space contributes to the development of brain damage i.e. cortical necrosis and hippocampal apoptosis in pneumococcal meningitis (PM). Galectin-3 and -9 are known pro-inflammatory mediators and regulators of apoptosis. Here, the gene and protein expression profile for both galectins was assessed in the disease progression of PM. The mRNA of Lgals3 and Lgals9 increased continuously in the cortex and in the hippocampus from 22 h to 44 h after infection. At 44 h after infection, mRNA levels of Lgals9 in the hippocampus were 7-fold and those of Lgals3 were 30-fold higher than in uninfected controls (P<0.01). Galectin-9 protein did not change, but galectin-3 significantly increased in cortex and hippocampus with the duration of PM. Galectin-3 was localized to polymorphonuclear neutrophils, microglia, monocytes and macrophages, suggesting an involvement of galectin-3 in the neuroinflammatory processes leading to brain damage in PM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined whether experimental pneumococcal meningitis induced the 72-kd heat shock protein (HSP72), a sensitive marker of neuronal stress in other models of central nervous system (CNS) injury. Brain injury was characterized by vasculitis, cerebritis, and abscess formation in the cortex of infected animals. The extent of these changes correlated with the size of the inoculum (P less than 0.003) and with pathophysiologic parameters of disease severity, i.e., cerebrospinal fluid (CSF) lactate (r = 0.61, P less than 0.0001) and CSF glucose concentrations (r = -0.55, P less than 0.0001). Despite the presence of numerous cortical regions having morphologic evidence of injury, HSP72 was not detected in most animals. When present, only rare neurons were HSP72 positive. Western blot analysis of brain samples confirmed the paucity of HSP72 induction. The lack of neuronal HSP72 expression in this model suggests that at least some of the events leading to neuronal injury in meningitis are unique, when compared with CNS diseases associated with HSP72 induction.