893 resultados para Propagation of lights


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce an approach to the design of three-dimensional transformation optical (TO) media based on a generalized quasiconformal mapping approach. The generalized quasiconformal TO (QCTO) approach enables the design of media that can, in principle, be broadband and low loss, while controlling the propagation of waves with arbitrary angles of incidence and polarization. We illustrate the method in the design of a three-dimensional carpet ground plane cloak and of a flattened Luneburg lens. Ray-trace studies provide a confirmation of the performance of the QCTO media, while also revealing the limited performance of index-only versions of these devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes ways in which emergence engineering principles can be applied to the development of distributed applications. A distributed solution to the graph-colouring problem is used as a vehicle to illustrate some novel techniques. Each node acts autonomously to colour itself based only on its local view of its neighbourhood, and following a simple set of carefully tuned rules. Randomness breaks symmetry and thus enhances stability. The algorithm has been developed to enable self-configuration in wireless sensor networks, and to reflect real-world configurations the algorithm operates with 3 dimensional topologies (reflecting the propagation of radio waves and the placement of sensors in buildings, bridge structures etc.). The algorithm’s performance is evaluated and results presented. It is shown to be simultaneously highly stable and scalable whilst achieving low convergence times. The use of eavesdropping gives rise to low interaction complexity and high efficiency in terms of the communication overheads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine the trade credit linkages among firms within a supply chain to reckon the effect of such linkages on the propagation of liquidity shocks from downstream to upstream firms. We choose a sample appropriate for this task, consisting of a large data set of Italian firms from the textile industry, a well known example of a comprehensive manufacturing cluster featuring a large number of small and specialized firms at each level of the supply chain. The results of the analysis indicate that the level of trade credit that firms provide to their suppliers is positively related to the level of trade credit granted to their clients: when the level of trade credit granted to clients divided by sales goes up by 1, the level of trade credit provided to suppliers divided by cost-of goods-sold goes up by an amount that varies between 0,22 and 0,52. Since all firms along the chain are linked by trade credit relationships, an increase in the level of trade credit granted by wholesalers generates a liquidity cascade throughout the chain. We designate the overall increase in the level of trade credit among all firms in the chain as a result of a unitary impulse in the level of trade credit granted by wholesalers as the multiplier effect of trade credit for the industry chain. We estimate such multiplier to vary between 1.28 and 2.04. We also investigate the effect of final demand on the level of trade credit sourced by firms at various levels of the chain and, in particular, whether such effect is amplified for firms further up in the chain as a result of liquidity propagation via trade credit linkages. We uncover evidence of such amplification when the links of liquidity transmission along the chain are individually modeled and estimated. An unitary increase in wholesalers’ sales is found to produce an effect on trade payables among firms at the top of the chain (i.e., Preparers and Spinners) that is more than twice as big as the corresponding effect among firms at the bottom of the chain (i.e., Wholesalers).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First results of a coupled modeling and forecasting system for the pelagic fisheries are being presented. The system consists currently of three mathematically fundamentally different model subsystems: POLCOMS-ERSEM providing the physical-biogeochemical environment implemented in the domain of the North-West European shelf and the SPAM model which describes sandeel stocks in the North Sea. The third component, the SLAM model, connects POLCOMS-ERSEM and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and lower trophic levels to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the base of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeels stocks are currently exploited close to the maximum sustainable yield, but large uncertainty is associated with determining stock maximum sustainable yield due to stock eigen dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2–6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dispersion relation for plane waves in uniaxial metamaterials with indefinite dielectric tensors and scalar positive permeability is theoretically investigated. It is found, that the isofrequency surfaces of the plane extraordinary waves have a hyperbolic shape which allows the propagation of waves with infinitely long wave vectors. As an example a metallodielectric multilayer was considered and the dispersion relations were determined using an effective medium approximation and an analytically exact Bloch wave calculation. The extraordinary waves in this structure are identified as multilayer plasmons and the validity of the effective medium approximation is examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs) propagating in a dusty plasma crystal is investigated in a continuum approximation. It is shown that long wavelength LDLWs are modulationally stable, while shorter wavelengths may be unstable. The possibility for the formation and propagation of different envelope localized excitations is discussed. It is shown that the total grain displacement bears a (weak) constant displacement (zeroth harmonic mode), due to the asymmetric form of the nonlinear interaction potential. The existence of asymmetric envelope localized modes is predicted. The types and characteristics of these coherent nonlinear structures are discussed. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.