907 resultados para Programming frameworks
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is
hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation
sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand,
DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.
The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They
were interesting because they bring to the table an on-demand energy/information supply mechanism.
The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.
The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.
The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.
The hidden energy and information coupled with
programmability provides another functionality, of selectively choosing what reactions to hide and
what reactions to allow to proceed, that helps develop a topological sequence of events.
Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different
molecular devices using DNA hairpins, and experimentally validate them in the
laboratory. 1) The first device: A
novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second
device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct
regardless of differences in the arrival time of different inputs.
b) renewable circuits which can be used multiple times without major degradation of the gate motifs
(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).
3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances
its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly.
4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification
of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite
amount of gain.
Nucleic acid circuits with the ability
to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.
We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome
to make these truly functional.
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.
Resumo:
Structured parallel programming, and in particular programming models using the algorithmic skeleton or parallel design pattern concepts, are increasingly considered to be the only viable means of supporting effective development of scalable and efficient parallel programs. Structured parallel programming models have been assessed in a number of works in the context of performance. In this paper we consider how the use of structured parallel programming models allows knowledge of the parallel patterns present to be harnessed to address both performance and energy consumption. We consider different features of structured parallel programming that may be leveraged to impact the performance/energy trade-off and we discuss a preliminary set of experiments validating our claims.
Resumo:
Metal–organic frameworks, or MOFs, have emerged as a new class of porous materials made by linking metal and organic units. The easy preparation, structural and functional tunability, ultrahigh porosity, and enormous surface areas of MOFs have led to them becoming one of the fastest growing fields in chemistry. MOFs have potential applications in numerous areas such as clean energy, adsorption and separation processes, biomedicine, and sensing. One of the most promising areas of research with MOFs is heterogeneous catalysis. This thesis describes the design and synthesis of new, carboxylate-based MOFs for use as catalysts. These materials have been characterized using diffraction, spectroscopy, adsorption, and imaging techniques. The thesis has focused on preparing highly-stable MOFs for catalysis, using post-synthetic methods to modify the properties of these crystals, and applying a combination of characterization techniques to probe these complex materials. In the first part of this thesis, several new vanadium MOFs have been presented. The synthesis of MIL-88B(V), MIL-101(V), and MIL-47 were studied using ex situ techniques to gain insight into the synthesis–structure relationships. The properties of these materials have also been studied. In the second part, the use of MOFs as supports for metallic nanoparticles has been investigated. These materials, Pd@MIL-101–NH2(Cr) and Pd@MIL-88B–NH2(Cr), were used as catalysts for Suzuki–Miyaura and oxidation reactions, respectively. The effect of the base on the catalytic activity, crystallinity, porosity, and palladium distribution of Pd@MIL-101–NH2(Cr) was studied. In the final part, the introduction of transition-metal complexes into MOFs through different synthesis routes has been described. A ruthenium complex was grafted onto an aluminium MOF, MOF-253, and an iridium metallolinker was introduced into a zirconium MOF, UiO-68–2CH3. These materials were used as catalysts for alcohol oxidation and allylic alcohol isomerization, respectively.
Resumo:
The present thesis describes the development of heterogeneous catalytic methodologies using metal−organic frameworks (MOFs) as porous matrices for supporting transition metal catalysts. A wide spectrum of chemical reactions is covered. Following the introductory section (Chapter 1), the results are divided between one descriptive part (Chapter 2) and four experimental parts (Chapters 3–6). Chapter 2 provides a detailed account of MOFs and their role in heterogeneous catalysis. Specific synthesis methods and characterization techniques that may be unfamiliar to organic chemists are illustrated based on examples from this work. Pd-catalyzed heterogeneous C−C coupling and C−H functionalization reactions are studied in Chapter 3, with focus on their practical utility. A vast functional group tolerance is reported, allowing access to substrates of relevance for the pharmaceutical industry. Issues concerning the recyclability of MOF-supported catalysts, leaching and operation under continuous flow are discussed in detail. The following chapter explores puzzling questions regarding the nature of the catalytically active species and the pathways of deactivation for Pd@MOF catalysts. These questions are addressed through detailed mechanistic investigations which include in situ XRD and XAS data acquisition. For this purpose a custom reaction cell is also described in Chapter 4. The scope of Pd@MOF-catalyzed reactions is expanded in Chapter 5. A strategy for boosting the thermal and chemical robustness of MOF crystals is presented. Pd@MOF catalysts are coated with a protecting SiO2 layer, which improves their mechanical properties without impeding diffusion. The resulting nanocomposite is better suited to withstand the harsh conditions of aerobic oxidation reactions. In this chapter, the influence of the nanoparticles’ geometry over the catalyst’s selectivity is also investigated. While Chapters 3–5 dealt with Pd-catalyzed processes, Chapter 6 introduces hybrid materials based on first-row transition metals. Their reactivity is explored towards light-driven water splitting. The heterogenization process leads to stabilized active sites, facilitating the spectroscopic probing of intermediates in the catalytic cycle.
Resumo:
The Commercial and Industrial Network improvement and programming policy reflected in this summary report was adopted for use in future highway programming by the Transportation Commission on November 5, 1991. The Iowa Department of Transportation, as directed by the Legislature, has established a 2,331-mile network of commercial and industrial highways and is directing a significant amount of primary construction funding resources toward improvements to this network. This summary outlines the technical needs assessment for improvements on the Commercial and Industrial Network for the next 20-year period. The portions of the network which require four-lane capacity, as well as major improvements to the two-lane sections, are graphically displayed. Detailed improvement needs and costs are listed in tabular form for the first two five-year periods (1992-1996 and 1997-2001). It is essential to note that these improvement needs are the result of a technical assessment and do not imply any funding commitment.