922 resultados para Potent antioxidants
Resumo:
齐墩果酸(OA)是一个分布广泛、含量丰富的天然三萜化合物,常以皂苷元的形式广泛存在于植物中,具有多种重要生物活性。但是OA许多活性较弱,且生物利用度低,限制了其在临床上的应用。一是OA水溶性差;二是抗癌活性仍与临床应用的抗癌药物相差比较大。 真菌在微生物转化中具有种类多、培养条件比较简单等特点,为了寻找到具有转化OA能力的菌株,采取一步发酵的方法,在18株实验室保藏真菌菌株中筛选到5株目的菌株,TLC分析显示有转化效果。 随后采用二步发酵的方法作为复筛,验证5株菌株转化能力,波谱分析结果表明5株菌株对OA确实有转化作用。 选择5株菌种中代号1F-2 2菌株作为放大实验菌株,分离转化产物,得到OA衍生物108(相对分子量414m/z)和1010(相对分子量340 m/z),分离出的产物用于活性检测。寻找到产物108的RP-HPLC分离条件,质谱得出二者相对分子质量。 为验证OA转化产物抗肿瘤活性,首次研究了OA对卵巢癌细胞株IGROV1和人乳腺癌细胞株MDA-MB-231作用,通过细胞增殖抑制实验、用MTT法检测细胞活性,结果表明齐墩果酸可降低卵巢癌细胞株IGROV1和乳腺癌细胞MDA-MB-231细胞增殖能力并呈剂量依赖性,对肿瘤细胞株的半数有效抑制浓度化IC50 分别为36.58μg/mL和38.8μg/mL (P<0.01)。OA能抑制肿瘤细胞活性,并且OA对卵巢癌细胞株IGROV1抑制活性高于乳腺癌细胞MDA-MB-231。 在此基础上,转化产物108和1010对卵巢癌细胞株IGROV1和人乳腺癌细胞株MDA-MB-231的抑制作用也进行研究,MTT实验结果表明,转化产物对两株癌细胞也有抑制活性(P<0.01)。 总之,本文工作为进一步开展齐墩果酸类化合物结构改造和抗肿瘤活性的研究奠定了基础。 Oleanolic acid (OA) is a triterpenoid widely distributed in the nature which possesses various important bioactivities. OA also serves as aglycon of many natural saponins. However, the relatively weak activities and poor bioavailability hinder its clinical use. Firstly, poor water-solubility results in worse bioavailability. Secondly, compared with clinical antitumor drug, the antitumor effect of OA has a great difference, it is worse. Many fungi have ability to transform nature products into a variety of derivatives, and transformation conditions of fungi are simple. Attempt to obtain fungi strains able to biotransform OA, we carried out the following experiments: To investigate the biotransformation 0f OA by strains supplied firstly, we used one-step fermentation method to screen the aimed strains from 18 fungus strains stored in our laboratory. On the basis of the initial screening experiments, we found 5 aimed strains. The TLC results showed that the 5 fungi strains could transform OA into other components derivatives. Then we used two-step fermentation method as secondly screening. We repeated the five strains to do the experiments, analytical data of the results proved the transformation indeed. In the followed experiments work, we chose 1F-2 2 strain as large-scale transformation fungus from the aimed fungi. We got two biotransformation products of OA by 1F-2 2, and named those derivatives 108 and 1010. We found RP-HPLC separation conditions of product 108. The two products were characterized by ESI-MS. To verify the anti-tumor activity of biotransformation products of OA, we studied the inhibition effect of oleanolic acid on the ovarian carcinomas IGROV1 and breast cancer cell line MDA-MB-231 firstly. With an assay based on a tetrazolium dye (MTT), the effects of various concentrations of oleanolic acid on ovarian carcinomas IGROV1 and breast cancer cell line MDA-MB-231 were studied. MTT method was used to measure the tumor cells viability. Compared with the control group, oleanolic acid can significantly inhibit the viability of the ovarian carcinoma cells IGROV1 and MDA-MB-231 breast cancer cell line (P<0.01), IC50 values were 36.58μg/mL or 38.8μg/mL. Oleanolic acid can inhibit the malignant tumor cells viability, and inhibitory activity of OA to ovarian carcinomas IGROV1 was higher than to breast cancer cell line MDA-MB-231. On this basis, we studied the anti-tumor activity of the two derivatives of OA [called 108 (414 m/z) and 1010(340 m/z)]. It came to the conclusion that the two derivatives also showed potent inhibitory effect on the growth of these tumor cells(P<0.01). Therefore, the results of studies will benefit the further investigating on the relationships of structures and antitumor activities of OA.
Resumo:
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 mu mol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol-chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism.
Resumo:
用蘸根和叶面喷施不同浓度油菜素内酯(BRs)的方法,在人工控制土壤水分条件下,对黄土高原重要造林树种文冠果苗木重要的抗氧化酶活性和抗氧化剂含量变化进行研究。结果表明,用0.05~0.4 mg/L BRs处理文冠果苗木,超氧化物歧化酶(SOD)活性在中度干旱胁迫下较清水对照增加,但差异不显著,重度胁迫下增加显著;在中度和重度胁迫下,各处理文冠果苗木过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性均较清水对照升高,且差异显著;在中度和重度胁迫下,5个浓度BRs处理对抗坏血酸(ASA)和还原型谷光甘肽(GSH)含量均具显著的增加效应。轻度和重度胁迫下,0.2 mg/L BRs处理对文冠果苗木抗氧化酶活性和抗氧化剂含量的增加效应均最为显著。
Resumo:
Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.
Resumo:
Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.
Resumo:
A water-soluble crude extract prepared from Ornithogalum caudatum Ait. (OCA) showing a high immunomodulating activitiy was isolated and characterized by virtue of get filtration and column chromatography. The presence of the monosaccharides has been established by the chemical analysis. The quantitative analysis of the alditol acetate derivatives of them showed the ratios of the monosaccharides analyzed by means of GC respectively. The concentrations of protein(280 nm) and carbohydrate (496 nm) were detected respectively. The information of the molecular weight from the pure polysaccharide was obtained by several standard Dextrans from the Sephadex chromatography.
Resumo:
Water-soluble polyhydroxylated fullerene derivatives (fullerenol) were synthesized, and their scavenging ability for (OH)-O-.-radical was studied by the combination of ESR spectroscopy and spin-trapping technique with phenyl-t-butyl-nitrone. It was found that fullerenols showed an excellent efficiency in eliminating (OH)-O-. free radicals generated by UV photolysis of H2O2. At an applied fullerenol concentration of 0, 3 mg/mL in the final solution, a radical scavenging efficiency of approximate 95% was achieved, revealing the potential use of these compounds as novel potent free radical scavengers in biological systems.
Resumo:
Four new highly brominated and fully substituted mono- and bis-phenols, 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)pyrrolidin-2-one (1), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)ethane (2), 6-(2,3,6-tribromo-4,5-dihydroxybenzyl)-2,5-dibromo-3,4-dihydroxybenzyl methyl ether (3), and 2,3,6-tribromo-4,5-dihydroxybenzyl methyl sulfone (4), were characterized from the marine red alga Symphyocladia latiuscula. In addition, five known bromophenols, bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (5), bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (6), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (7), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (8), and 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (9), were also isolated and identified. The structures of these compounds were elucidated by spectroscopic methods including 1D and 2D NMR as well as by low- and high-resolution mass spectrometric analysis. Structurally, all of these compounds are highly brominated and fully substituted, and contain one or two 2,3,6-tribromo-4,5-dihydroxyphenyl unit(s) in each of the molecules. In addition, compound 4 possesses a unique sulfone structural feature. Each of the isolated compounds was evaluated for alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity and all were found to be potent, with IC50 values ranging from 8.1 to 24.7 mu M, compared to the known positive control butylated hydroxytoluene (BHT), with an IC50 of 81.8 mu M.
Resumo:
Lipophilic extracts from 16 species of seaweeds collected along the Qingdao coastline were screened and evaluated for their antioxidant activities (AA) using the beta-carotene-linoleate assay system. The diethyl ether soluble extracts of all selected seaweeds exhibited various degrees of antioxidative efficacy in each screen. The highest antioxidant capacities among the tested samples were observed for Rhodomela confervoides and Symphyocladia latiuscula and were comparable with that of the well-known antioxidant butylated hydroxytoluene and greater than that of propyl gallate. The lipophilic content of all 16 samples and the chemical composition of 4 selected seaweeds, R. confervoides and S. latiuscula, which had higher AA, Laminaria japonica, which had intermediate AA, and Plocamium telfairiae, which had lower AA, were analyzed by gas chromatography and gas chromatography-mass spectrometry, respectively. Fatty acids and alkanes were found. The present data indicated an increase in antioxidative property with increasing content of unsaturated fatty acid. The result of this study suggests that seaweeds can be considered as a potential source for the extraction of lipophilic antioxidants, which might be used as dietary supplements or in production in the food industry. This is the first report on the antioxidant activities of lipophilic extracts from seaweeds.
Resumo:
6-Bromo-1-(3-bromo-4,5-dihydroxybenzyl)phenanthro[4,5-bcd]furan-2,3,5-triol (urceolatin, 1), a highly oxygenated bromophenol containing an unprecedented naturally occurring benzylphenanthro[4,5-bcd]furan unit, was isolated from the marine red alga Polysiphonia urceolata. Its structure was established on the basis of extensive spectroscopic analysis. Compound 1 displayed significant DPPH radical-scavenging activity with an IC50 value of 7.9 mu M, which is 10-fold more potent than that of the positive control, butylated hydroxytoluene.
Resumo:
Three new (1-3) and three known (4-6) bromophenols were isolated and identified from the marine red alga Polysiphonia urceolata. On the basis of extensive analysis of spectroscopic data, the structures of these compounds were determined to be 7-bromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol (1), 4,7-dibromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol (2), 1,8-dibromo-5,7-dihydrodibenzo[c,e]oxepine-2,3,9,10-tetraol (3), urceolatol (4), 3-,bromo-4,5-dihydroxybenzaidehyde (5), and 3,5-dibromo-4-hydroxybenzaldehyde (6). Each of the isolated compounds was evaluated for alpha,alpha-dipheny1-beta-picrylhydrazyl (DPPH) radical scavenging activity, and all were found to be potent, with IC50 values ranging from 6.1 to 35.8 mu M, compared to the positive control, butylated hydroxytoluene (BHT), with an IC50 of 83.8 mu M.
Resumo:
The high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity. Through screening of approximate to 20,000 microbial extracts, 12 hits were identified with broadspectrum antifungal activity. Seven of them showed little cytotoxicity against human hepatoma cells. Fractionation of the active extracts revealed beauvericin (BEA) as the most potent component, because it dramatically synergized KTC activity against diverse fungal pathogens by a checkerboard assay. Significantly, in our immunocompromised mouse model, combinations of BEA (0.5 mg/kg) and KTC (0.5 mg/kg) prolonged survival of the host infected with Candida parapsilosis and reduced fungal colony counts in animal organs including kidneys, lungs, and brains. Such an effect was not achieved even with the high dose of 50 mg/kg KTC. These data support synergism between BEA and KTC and thereby a prospective strategy for antifungal therapy.
Resumo:
A new fungus-derived benzodiazepine analogue, 2-hydroxycircumdatin C (1), and a compound which has been isolated from a natural resource for the first time, but has been previously synthesized, namely (11aS)-2,3-dihydro-7-methoxy-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione (2), along with five structurally related known alkaloids (3-7), were isolated from Aspergillus ochraceus, an endophytic fungus derived from the marine brown alga Sargassum kjellmanianum. Their structures were established on the basis of spectroscopic methods. The absolute configuration of I was determined through CD evidence. Compound 1 displayed significant DPPH radical-scavenging activity with an IC50 value of 9.9 mu M, which is 8.9-fold more potent than that of butylated hydroxytoluene (BHT), a well-known synthetic positive control.
Resumo:
There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl4-O-(alpha-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(alpha-D-ribofuranosyl)questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-O-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.
Resumo:
Thioredoxin, with a redox-active disulfide/dithiol in the active site, is the major ubiquitous disulfide reductase responsible for maintaining proteins in their reduced state. In the present study, the cDNA encoding thioredoxin-1 (designated EsTrx1) was cloned from Chinese mitten crab Eriocheir sinensis by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EsTrx1 was of 641 bp, containing a 51 untranslated region (UTR) of 17 bp, a 3' UTR of 306 bp with a poly (A) tail, and an open reading frame (ORF) of 318 bp encoding a polypeptide of 105 amino acids. The high similarity of EsTrx1 with Trx1s from other animals indicated that EsTrx1 should be a new member of the Trx1 sub-family. Quantitative real-time PCR analysis revealed the presence of EsTrx1 transcripts in gill, gonad, hepato-pancreas, muscle, heart and haemocytes. The expression of EsTrx1 mRNA in haemocytes was up-regulated after Listonella anguillarum challenge, reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to elucidate its biological functions, EsTrx1 was recombined and expressed in E. coli BL21 (DE3). The rEsTrx1 was demonstrated to possess the expected redox activity in enzymatic analysis, and to be more potent than GSH in antioxidant capacity. These results together indicated that EsTrx1 could function as an important antioxidant in a physiological context, and perhaps is involved in the responses to bacterial challenge. (C) 2009 Elsevier Ltd. All rights reserved.