929 resultados para Potassium decavanadate decahydrate
Resumo:
NdCl3 reacted with C6H5CH2C5H4Na in the ratio 1:1 at -78 degrees C giving [C6H5 CH2C5H4NdCl2 . nTHF], which then was reacted with C8H8K2/THF to yield the title complex [(C8H8)(3)(C6H5CH2C5H4)Nd2K(THF)(3)] (C6H5CH2C5H4 = benzylcyclopentadienyl). The crystal structure of the Nd complex was determined by X-ray diffraction and revealed that the benzyl group is coordinated to the potassium atom to form a new type of trinuclear complex [(eta(8)-C8H8)Nd(mu(2)-eta(8)-C8H8K(THF) (eta(3)-C6H5CH2-mu(2)-eta(5)-C5H4)Nd (THF)(2)(eta(8)-C8H8)]. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
W-183 NMR spectra were obtained for [La(AsW11O39)(2)](11-), [La(As2W17O61)(2)](17-), [La(SiW9Mo2O39)(2)](13-), [LaSb9W21O86](16-), [LaAs4W40O140](25-) and alpha-, beta-[(CeO)(3) . (SiW9O34)(2)](14-) complexes, Tungsten NMR studies showed that the C-s symmetry of the square antiprism for [La(ASW(11)O(39))(2)](11-) and [La(As2W17O61)(2)](17-) anions keep constant in aqueous solution; the lanthanide accupied the central S-1 site in [LnSb(9)W(21)O(86)](16-) and [LnAs(4)W(40)O(140)](25-) complexes, respectively, and lanthanide metal cations gave [(CeO)(3) . (SiW9O34)(3)](14-) type of complexes with SiW9O3410-.
Resumo:
In this paper, we introduce a very convenient method to produce water soluble C-60 derivatives- fullerols by the reaction of C-60 with potassium in toluene solution, FT-IR, H-1 NMR and FABMS proved the multi-hydroxyl and C-60 cage structures of the products, The properties of unstability to light, heat, basicity of aqueous solution and the solubility in some common polar solvents were also described.
Resumo:
Two new phenoxynaphthacenequinone derivatives, 6-[4-(2-(4-hydroxyphenyl)isopropyl)phenoxy] -5,12-naphthacenequinone (7) and 6-[4-(potassium sulfophenylazo)phenoxy]-5,12-naphthacenequinone (8), were synthesized, and their photochromism in solution was investigated and compared with that of 6-phenoxy-5,12-naphthacenequinone (1). On the basis of the spectral data and the selective irreversible reaction of ammonia with the colored phenoxy-ana-naphthacenequinone, the concentrations of the ana forms at the photostationary state (PSS), achieved by 365 nm UV irradiation, and the molar extinction coefficients of the pure ana forms at 481-482 nm of compounds 1, 7 and 8 in dimethylsulfoxide (DMSO) were found to be 83 mol.% and 1.70x10(4) mol(-1) dm(3) cm(-1), 82 mol.% and 1.62x10(4) mol(-1) dm(3) cm(-1) and 16 mol.% and approximately 1.34x10(4) mol(-1) dm(3) cm(-1) respectively; the absorption spectra of the colored ana forms of 7 and 1 in DMSO were estimated; the rate;constants of photoconversion induced by 365 nm light were obtained. The results show the strong effect of the structure of the phenoxynaphthacenequinones on their photochromism in solution. In addition to DMSO solution, compound 7 exhibited normal photochromism in toluene, benzene, chloroform and a DMSO-ethanol mixed solvent, but not in dimethylformamide (DMF) in which a photoinduced reaction occurred between 7 and DMF or impurities.
Resumo:
Brown crystalline tricyclopentadienyl cerium tetrahydrofuranate (THF) complex (eta5-C5H5)3Ce(THF) was prepared by the reaction of (NH4)2Ce(NO3)6 with sodium cyclopentadienide (C5H5Na) in THF at molar ratio of 1:6. ErCl3.4THF reacts with potassium cyclooct
Resumo:
The frequencies of the stretching vibration and the bending vibration of the 0-H ... 0 bond in potassium dihydrogen phosphate have been calculated by means of two semiempirical formulae with three parameters. The calculated results can give satisfactory explanation for the experimental spectra of the potassium dihydrogen phosphate crystal. The parameters used in the calculations may be related to the chemical bonding and the charge distribution about the two oxygen atoms of the 0-H ... 0 bond system.
Resumo:
The graft polymerization of acrylic acid(AA) on poly(vinyl alcohol) (PVAL) has been investigated by using either potassium persulfate (KPS) or ceric ammonium nitrate(CAN) as an initiator. In the case of KPS initiation, the formation of the graft polymer always lags behind the homopolymer formation. The graft polymer is separated by acetone, and the increase of reaction temperature favors the homopolymer formation at the early stage. In the case of CAN initiation, graft polymers with a high PAA content can hardly be obtained when the polymerization is performed under nitrogen and at < 0.06 mol/L HNO3 concentration. It has been found that incorporation of a small amount of oxygen in a protective nitrogen gas accelerates markedly the graft polymerization, and that the resulting graft polymers can not be separated by acetone precipitation technique in most cases. The Dalian nitrogen(containing 0.7% oxygen) is a good protective gas for CAN-initiated PVAL-AA graft polymerization.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
The behaviour of the electroplated copper film electrode on tin oxide/glass or glassy carbon surface was studied in potassium hydroxide medium by cyclic voltammetry and in situ transmission spectroelectrochemistry. The results indicate that the electroplated copper film electrode is similar to a copper electrode and cyclic voltammetry with this electrode affords more resolution. The anodic peaks were found to correspond successively to the adsorption of oxygen, the formation of a surface layer of Cu2O, the formation of a surface layer of Cu(OH)2 or CuO and formation of a thick multilayer film of CuO. This is the first time it has been proposed that a surface layer of Cu(OH)2 or CuO is formed from the oxidation of the surface layer of Cu2O. Similarly, a clear interpretation is presented that the cathodic peaks correspond successively to the reduction of CuO to Cu2O, the reductions of Cu2O to Cu and the soluble Cu(II) species to Cu. On the other hand, a shoulder peak related to the chemical transformation of Cu(OH)2 to CuO was first observed.
Resumo:
The tetranuclear nearly-linear complex (eta-8-C8H8)Er(mu-eta-8-C8H8)K(mu-eta-8-C8H8)Er(mu-eta-8-C8H8)K(THF)4 (THF = tetrahydrofuran) is first synthesised by the reaction of benzylcyclopentadienyl erbium dichloride (PhCH2C5H4)ErCl2.3THF with cyclooctatetraenyl potassium K2C8H8 in 1:1 molar ratio in THF; a single crystal X-ray study has shown that the complex has the tetralayer-sandwich structure and that the adjacent Er3+ and K+ ions are bridged by eta-8-cyclooctatetraenyl group.
Resumo:
(eta-5-C5H5)2YbCl.THF reacts with an equivalent molecular quantity of K(2,4-C7H11) (2,4-dimethyl pentadienyl potassium), and treatment of the product with DME yields (eta-5-C5H5)2Yb.DME. The crystal of (eta-5-C5H5)2Yb.DME belongs to the orthorhombic space group Fdd2 with a = 13.678(4) angstrom, b = 23.255(6) angstrom, c = 9.192(2) angstrom and Z = 8. The crystal parameters are found to differ from previously reported data.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
The complexes named in the title (eta-5-C9H7)3Ln.OC4H8 (Ln = Nd, Gd, Er) were synthesized by the reaction of anhydrous lanthanide trichlorides with indenyl potassium and cyclooctadienyl potassium (1:2:1 molar ratio) in THF. The complexes were characterized by elemental analysis, infrared and H-1-NMR spectroscopy, and mass spectrometry. In addition, the crystal structures of (eta-5-C9H7)3Nd.OC4H8 (1) and (eta-5-C9H7)3Gd.OC4H8 (2) were determined by an X-ray diffraction study. Complexes 1 and 2 belong to hexagonal space group P6(3) with unit cell parameters a = b = 11.843(3), c = 10.304(4) angstrom, V = 1251.7(9) angstrom-3, D(c) = 1.49 g.cm-3, Z = 2 for 1, and a = b = 11.805(2), c = 10.236(2) angstrom, V = 1235.4(6) angstrom-3 D(c) = 1.54 g.cm-3, Z = 2 for 2. The structures were solved by Patterson and Fourier techniques and refined by least-squares to final discrepancy indices of R = 0.049, R(w) = 0.053 using 925 independent reflections with I greater-than-or-equal-to 3-sigma(I) for 1, and R = 0.023, R(w) = 0.025 using 1327 independent reflections with I greater-than-or-equal-to 3-sigma(I) for 2. Coordination numbers for Nd3+ and Gd3+ are 10; the average bond lengths Nd-O and Gd-O are 2.557(21) and 2.459(13) angstrom, respectively. The structural studies showed the complexes to have 3-fold symmetry, but the THF molecule has no such symmetry; consequently the arrangement of carbon atoms in the THF molecule are disordered.
Resumo:
Jussiaea repens L. (JRL) is an edible medicinal plant and is also used as a vegetable by the local people in southwestern China. The crude extract and its four fractions derived from JRL were evaluated for the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, hydroxyl radical-scavenging capacity and the potassium ferricyanide reduction property. The ethyl acetate-soluble fraction (EAF) and EAF6 (a subfraction derived from EAF) were the most valuable fraction and subfraction, respectively. Furthermore, bioactivity-guided chromatographic fractionation revealed that three pure compounds greatly contributed to the antioxidant activities. Qualitative and quantitative analyses of the major antioxidant constituents in the extract were systematically conducted by NMR, mass spectral analyses and RP-HPLC. The result demonstrated that rosmarinic acid (2.00 mg g(-1) JRL dry weight) quercetin 3-O-beta-D-glucopyranoside (9.88 mg g(-1) JRL dry weight), and kaempferol 3-O-beta-D-glucopyranoside (1.85 mg g(-1) JRL dry weight) were the major antioxidative constituents in JRL. These compounds are reported for the first time from this plant.
Resumo:
Antioxidant activity (AA), total phenolic content, and reducing power of the crude extract, fractions, and subfractions derived from a red alga, Polysiphonia urceolata, were evaluated and determined. The antioxidative activity was measured using the alpha,alpha-diphenyl-beta-pierylhydrazyl (DPPH) radical scavenging assay and the P-carotene-linoleate assay systems, and compared with that of butylated hydroxytoluene (BHT), gallic acid (GA), and ascorbic acid (AscA). The results showed that the crude extract and the ethyl acetate-soluble fraction exhibited higher AA than BHT in the DPPH assay model, at all of four concentration levels tested (from 0.4 to 50 mu g/ml), while, in the beta-carotene-linoleate assay system, the crude extract and the ethyl acetate-soluble fraction exhibited similar or, in most cases, higher AA than GA and AscA at the same concentrations (from 10 to 200 mu g/ml). The ethyl acetate-soluble fraction was further fractionated into seven subfractions F1-F7 by silica gel vacuum liquid chromatography. F1 was found to be the most effective subfraction in both assay systems. The total phenolic content and reducing power were determined using the Folin-Ciocalteu and the potassium ferricyanide reduction methods, respectively. Statistical analysis indicated a significant association between the antioxidant potency and total phenolic content as well as between the antioxidant potency and reducing power. (c) 2005 Elsevier Ltd. All rights reserved.