923 resultados para Porosity in Ceramic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic dielectrics with high dielectric constant in the microwave frequency range are used as filters, oscillators [I], etc. in microwave integrated circuits (MICs) particularly in modern communication systems like cellular telephones and satellite communications. Such ceramics, known as 'dielectric resonators (DRs),donot only offer miniaturisation and reduce the weight of the microwave components. but also improve the efficiency of MICs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (Ba1-x Srx) (Nd1/2, Nb1/2) O3 ceramics have been prepared by the conventional ceramic route for different values of x. Addition of a small amount of CeO2(1 wt%) as a sintering aid increased the density of the samples. The structure and microstructure of the sintered samples are studied by X-ray diffraction and SEM methods. The dielectric properties of the samples are measured in the microwave frequency region as a function of composition. The dielectric constant decreases as x increases. The coefficient of thermal variation of resonant frequency decreases as the Sr content increases and goes to the negative side. The dielectric properties of (Ba1-x Srx) (Nd1/2, Nb1/2) O3 are in the range suitable for application as dielectric resonators in microwave circuits

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric ceramics BaNd2Ti3Oto, BaNd2Ti4O12 and BaNd2Ti5O14 have been prepared by Conventional solid state ceramic route. The sintered ceramic samples have been characterized by X-ray diffraction and Scanning Electron Microscopy (SEM). The dielectric properties in the microwave frequency range have been measured using conventional microwave dielectric resonator methods. The BaNd2Ti1O10, BaN2Ti4O12 and BaNd2Ti5O14 have dielectric constants (Er) ~ 60, 84 and 77 respectively. They have relatively high quality factors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microwave dielectric ceramic resonator based on BaCe2Ti5O15 and Ba5Nb4O15 have been prepared by conventional solid state ceramic route. The dielectric resonators (DRs) have high dielectric constant 32 and 40 for BaCe2Ti5O15 and Ba5Nb4O15, respectively. The whispering gallery mode (WGM) technique was employed for the accurate determination of the dielectric properties in the microwave frequency range. The BaCe2Ti5O15 and Ba5Nb4O15 have quality factors (Q X F) of 30,600 and 53,000 respectively. The quality factor is found to depend on the azimuthal mode numbers. The temperature coefficient of resonant frequency (Tr) of BaCe2Ti5O15 and Ba5Nb4O15 have been measured accurately using different resonant modes and are + 41 and + 78 ppm/K, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new microwave dielectric resonator Ba(Tb1/2Nb1/2)03 has been prepared and characterized in the microwave frequency region. 1 wt% CeO2 is used as additive to reduce the sintering temperature. The sintered samples were characterized by XRD, SEM and Raman spectroscopic methods. Microwave DR properties such as er, Q factor and temperature-coefficient of resonant frequency (Ti) have been measured using a HP 8510 B Network Analyzer. Cylindrical DRs of Ba(Tb1/2Nbi/2)03 showed high Er (~ 37), high Q (~3,200) and low Tf (~10 ppm /°C) at 4 GHz and hence are useful for practical applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive T f while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative Tf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of Tf increased with an increase in RE ionic radii, and a change in the sign of Tf occurred when the ionic radius was between 0.90 and 0.92 A. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6 (Er = 20.6, Qxf = 85,500), EuTiTaO6 (Er = 41.3, Qxf = 59,500), and YTiTaO6 (Er = 22.1, Q„xf = 51,400) are potential candidates for dielectric resonator applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave dielectric resonators (DRs) based on Ba(B1,2Nbi/2)03 [B' = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In] complex perovskites have been prepared by conventional solid state ceramic route. The dielectric properties (relative permittivity, Er; quality factor, Q; and resonant frequency, rr) of the ceramics have been measured in the frequency range 4-6 GHz using resonance methods. The resonators have relatively high dielectric constant in the range 36-45, high quality factor and small temperature variation of resonant frequency. The dielectric properties are found to depend on the tolerance factor (t), ionic radius (r), and lattice parameter (ap)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of mirage effect suffered by a He-Ne laser beam has been utilized to detect phase transitions in solids. It has been observed that anomalous fluctuations of large amplitude occur in the signal level near the transition temperature. The mean square value of the fluctuation is found to exhibit a well-defined peak at this point. Results of measurements made in the case of crystals of TGS ((NH2CH2COOH)3.H2SO4) and a ceramic sample (BaTiO3) are given to illustrate this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal characterization of alumina–zirconia and zirconia ceramic tapes using a photoacoustic technique is presented. A transmission-mode geometry is employed for the measurement of thermal diffusivity while a reflection-mode geometry is used for the measurement of thermal effusivity. In both these geometries, the same open photoacoustic cell is used. From the measured values of thermal diffusivity and thermal effusivity, the thermal conductivity value has also been evaluated.