927 resultados para Polymeric foams
Resumo:
Temperature dependent reaction products are observed when borohydride is present in aqueous solutions containing Ir3+. At temperatures of 40 degrees C and above, metallic iridium is formed while under ambient conditions of 25 degrees C, borohydride results in an alkaline environment that helps in hydrolyzing the precursor to form IrO2. The Ir foams and IrO2 are subsequently used to study their catalytic properties.
Resumo:
Corona is an unavoidable phenomena in high voltage power transmission system, in spite of suitably designed insulator accessories and transmission line hardware. It is a proven fact that the continuous occurrence of corona can subject the polymeric insulator to a severe degradation. Further, moisture in the air has a positive influence on the corona activity. This paper presents the methodology to evaluate the corona performance of the silicone rubber housing material with simultaneous application of cold fog. Analysis conducted after corona treatment by the Fourier Transform Infrared Spectroscopy (FTIR) present an interesting results showing a higher hydroxylation of sample surface under the moisture application than in the normal condition for both AC and DC excitation. FTIR spectrum also indicates the presence of nitric acid on the treated surface with coldfog application. Results obtained from SEM analysis are also presented.
Resumo:
With the emergence of scientific interest in graphene oxide (GO) in recent times, researchers have endeavored to incorporate GO in thermoset polymeric matrix to develop composites with extraordinary set of properties. The current state of research in graphene/thermoset polymer composites is highlighted here with a focus on the role of interface in dictating the overall properties of the composites. Different strategies like covalent and non-covalent functionalization of GO have been discussed with respect to improvement in mechanical, electrical, thermal and rheological properties. In addition, future prospects have been outlined. By assessing the current state of research in graphene/thermoset composites, it is obvious that graphene derivatives are promising materials in enhancing the structural properties of the nanocomposites at extremely low levels of filler loading. This opens new avenues in designing lightweight composites for myriad applications and by tailoring the interfacial adhesion with the polymer, ordered structure can be achieved at macroscopic processing scales. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of similar to 200 F and similar to 300 F, energy densities of similar to 1.9 Wh kg(-1) and similar to 2.5 Wh kg(-1) and power densities of similar to 2 kW kg(-1) and similar to 0.8 kW kg(-1), respectively, having faradaic-efficiency values of similar to 90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about similar to 4 US$/Wh as compared to similar to 20 US$/Wh for commercially available ultracapacitors.
Resumo:
This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.
Resumo:
In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Ultralight and macroporous three-dimensional reduced graphene oxide (rGO) foams are prepared by lyophilization (freeze-drying) technique to avoid a conventional template method. This method allows tailoring the porosity of the foams by varying the weight percentages of graphene oxide dispersions in water. Three different rGO foams of 0.2, 0.5 and 1.0 wt% are used for NO2 sensing. Sensing response from the tailored structure of rGO is found to be directly related to the density. A maximum of 20% sensing response is observed for a higher porosity of the structure, better than the known results so far on graphene foams in the literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g(-1) specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg(-1) and 72 kW kg(-1), respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.
Resumo:
In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.
Resumo:
Coordination-driven self-assembly of dinuclear half-sandwich p-cymene ruthenium(II) complexes Ru-2(mu-eta(4)-C2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) and Ru-2(mu-eta(4)-C6H2O4)(CH3OH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1b) separately with imidazole-based tritopic donors (L-1-L-2) in methanol yielded a series of hexanuclear 3+2] trigonal prismatic cages (2-5), respectively L-1 = 1,3,5-tris(imidazole-1-yl) benzene; L-2 = 4,4',4 `'-tris(imidazole-1-yl) triphenylamine]. All the self-assembled cages 2-5 were characterized by various spectroscopic techniques (multinuclear NMR, Infra-red and ESI-MS) and their sizes, shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) computation. Despite the possibility due to the free rotation of donor sites of imidazole ligands, of two different atropoisomeric prismatic cages (C-3h or C-s) and polymeric product, the self-selection of single (C(3)h) conformational isomeric cages as the only product is a noteworthy observation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the BPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. PS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non producing cells benefit from the BPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of BPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture was achieved using cellular components of Paenibacillus polymyxa after adaptation to the above minerals. The soluble and insoluble fractions of the thermolysed bacterial cells adapted to sphalerite yielded higher flotation recoveries of sphalerite with selectivity indices ranging between 22 and 29. The protein profile for the unadapted and mineral-stressed cells was found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances. The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of P. polymyxa were quantified. In keeping with these changes, a marginal morphological transition of P. polymyxa from rods to spheres was observed. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface potential of the mineral-stressed cells were demonstrated. These studies highlighted that, mineral stress led to qualitative and quantitative changes in the cellular components, which facilitated the enhancement of flotation selectivity of sphalerite.
Resumo:
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: sigma*-LP, pi*-LP, and pi*-pi, respectively. The overall activation energy is found to be similar to 73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.