976 resultados para Polymer Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of CaCl(2), Ca(NO(3))(2), CaSO(4), CaCO(3) and Ca(3)(PO(4))(2) on the flow behavior of xanthan gum solutions was investigated. Regardless the concentration and type of calcium salt used, xanthan solutions presented pseudoplastic behavior. The soluble salts (CaCl(2) and Ca(NO(3))(2)) induced the disordered state in the xanthan chains at concentration of 1.0 g/L or 10 g/L, decreasing the flow consistency index (K) values. At 100 g/L soluble salts K values were similar to those found for pure xanthan solutions, whereas at the same concentration of insoluble particles the K values increased 20%. The adsorption of xanthan gum onto Si/SiO(2) surfaces in the presence of calcium salts was investigated by ellipsometry and atomic force microscopy (AFM). The adsorbed layer of xanthan onto Si/SiO(2) consisted of two regions: (i) a thin acid resistant sublayer, where xanthan chains were like highly entangled fibers and (ii) a thick upperlayer, whose morphology was calcium salt dependent. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel material comprised of bacterial cellulose (BC) and Laponite clay with different inorganic organic ratios (m/m) was prepared by the contact of never-dried membranes of BC with a previous dispersion of clay particles in water. Field emission scanning electron microscopy (FE-SEM) data of composite materials revealed an effective adhesion of clay over the surface of BC membrane; inorganic particles also penetrate into the polymer bulk, with a significant change of the surface topography even at 5% of clay loading. As a consequence, the mechanical properties are deeply affected by the presence of clay, increasing the values of the Young modulus and the tensile strength. However the maximum strain is decreased when the clay content is increased in the composite in comparison to pristine BC. The main weight loss step of the composites is shifted towards higher temperatures compared to BC, indicating that the clay particles slightly protect the polymer from thermal and oxidative decomposition. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of isosorbide aliphatic polyesters is demonstrated by the use of Novozym 435, a catalyst consisting of Candida antarctica lipase B immobilized on a macroporous support Several experimental procedures were tested and azeotropic distillation was most effective in removing low mass byproduct Furthermore, the use of diethyl ester derivatives of diacid comonomers gave isosorbide copolyesters with highest Isolated yield and molecular weights The length of the diacid aliphatic chain was less restrictive, but with a clear preference for longer aliphatic chains The molecular mass values of the obtained products were equivalent or higher than those obtained by nonenzymatic polymerizations, a clear illustration of the potential of enzymatic over conventional catalysis The ability of Novozym 435 to catalyze the synthesis of isosorbide polyester with weight-average molecular weights in excess of 40000 Da was unexpected given that isosorbide has two chemically distinct secondary hydroxyl groups This is the first example in which isosorbide polyesters were synthesized by enzyme catalysis, opening a large array of possibilities for this important class of biomass-derived building blocks Because these polymers are potential biomaterials the total absence of conventional Lewis acid catalyst residues represents a major Improvement in the toxicity of the material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The products formed from the reaction of emeraldine base polyaniline (EB-PANI) with Fe(III) ions in N-methyl-pyrrolidone (NMP), dimethylacetamide (DMA), dimethylformamide (DMF) and m-cresol media have been investigated using UV-VIS-NIR and resonance Raman (lambda(0) = 632.8 and 1064 nm) spectroscopies. Through these results it was verified that the different PANI forms in solution can be formed by the suitable choice of the solvent. The behavior of Fe(III)/EB-PANI in different solvents was rationalized in terms of the interactions among Fe(III) ions, EB-PANI and solvent. In basic NMP, DMA and DMF media, the reaction of Fe(III) with EB-PANI yields EB-PANI doping giving ES-PANI and/or the EB-PANI oxidation to PB-PANI. The formation of ES-PANI is favored in DMF while PB-PANI is formed in a greater extension in NMP and DMA. In acidic m-cresol, only ES-PANI is produced in Fe(III)/EB-PANI solutions indicating the important role played by the solvent in the nature of the product. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of chemically prepared poly-p-phenylenediamine (PpPD) was investigated by Resonance Raman (RR), FTIR, UV-VIS-NIR, X-ray photoelectron (XPS), X-ray Absorption at Nitrogen K edge (N K XANES), and Electron paramagnetic Resonance (EPR) spectroscopies. XPS, EPR and N K XANES data reveal that polymeric structure is formed mainly by radical cations and dication nitrogens. It excludes the possibility that PpPD chains have azo or phenazinic nitrogens, as commonly is supposed in the literature. The RR spectrum of PpPD shows two characteristic bands at 1527 cm(-1) and 1590 cm(-1) that were assigned to nu C=N and nu C=C of dication units, respectively, similar to polyaniline in pernigraniline base form. The presence of radical cations was confirmed by Raman data owing to the presence of bands at 1325/1370 cm(-1), characteristic of nu C-N of polaronic segments. Thus, all results indicate that PpPD has a doped PANT-like structure, with semi-quinoid and quinoid rings, and has no phenazinic rings, as observed for poly-o-phenylenediamine. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes the preparation and characterization of new starch cross-linked polyurethanes produced by the reaction of native cornstarch with a propylene oxide toluene diisocyanate oligomer. Infrared analysis confirmed the occurrence of the reaction and solubility and swelling tests showed that it had led to cross-linked structures. These products were totally amorphous and displayed elastomeric properties associated with two T(g)s at -60 and 35 degrees C. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in-depth oxypropylation of different types of cellulose fibers, namely Avicel, Rayon, Kraft, and Filter Paper, was investigated. New biphasic mono-component materials were obtained, which could be hot-pressed to form films of cellulose fibers dispersed into a thermoplastic matrix. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy. differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The optimization of this process led to the establishment of the optimal molar ratio between the cellulose CH groups and propylene oxide, which varied as a function of the specific morphology of the fibers. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four samples of N,O-carboxymethylchitosan (0.5 < <(DS)over bar> < 1.5) were prepared by reacting chitosan (<(DA)over bar> = 24%) with monochloroacetic acid in the presence of excess sodium hydroxide. The carboxymethylchitosan samples were soluble in a wider range of pH as compared to the parent chitosan and the X-ray diffraction showed that they adopt a less ordered arrangement. The carboxymethylation of chitosan decreased the thermal stability of the polymer as evaluated by thermogravimetry but no clear dependence of the activation energy on the average degree of substitution of carboxymethylchitosan was identified. However, the values of activation energy of carboxymethylchitosan issued from the isothermal study depended on the degree of conversion, suggesting the occurrence of a complex set of simultaneous reactions. (C) 2008 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resol type resins were prepared in alkaline conditions (potassium hydroxide or potassium carbonate) using furfural obtained by acid hydrolysis of abundant renewable resources from agricultural and forestry waste residues. The structures of the resins were fully determined by H-1, C-13, and 2D NMR spectrometries with the help of four models compounds synthesized specially for this study. MALDI-Tof mass spectrometry experiments indicated that a majority of linear oligomers and a minority of cyclic ones constituted them. Composites were prepared with furfural-phenol resins and sisal fibers. These fibers were chosen mainly because they came from natural lignocellulosic material and they presented excellent mechanical microscopy images indicated that the composites displayed excellent adhesion between resin and fibers. Impact strength measurement showed that mild conditions were more suitable to prepare thermosets. Nevertheless, mild conditions induced a high-diffusion coefficient for water absorption by composites. Composites with good properties could be prepared using high proportion of materials obtained from biomass without formaldehyde. (c) 2008 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.