901 resultados para Poly(styrene-b-4-vinyl pyridine)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation Department, Office of Environmental Affairs, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

original file name DSC_0004

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ingress of water into poly(2-hydroxyethyl methacrylate), PHEMA, loaded with either one of two model drugs, vitamin B-12 or aspirin, was studied at 37 degreesC using three-dimensional NMR imaging. PHEMA was loaded with 5 and 10 wt % of the drugs. From the imaging profiles, it was observed that incorporation of vitamin B-12 into PHEMA resulted in enhanced crack formation on sorption of water and the crack healing behind the diffusion front was slower than for PHEMA without added drug. This was accounted for by the anti-plasticization of PHEMA by vitamin B-12. Crack formation was inhibited in the P-HEMA-aspirin systems because of the plasticizing effect of the aspirin on the PHEMA matrix. All of the polymers were found to absorb water according to an underlying Fickian diffusion mechanism. For PHEMA loaded with 5 wt % of aspirin or vitamin B-12, the best values of the water diffusion coefficients were both found to be 1.3 +/- 0.1 x 10(-11) m(2) s(-1) at 37 degreesC, while the values for the polymer loaded with 10 wt % of the drugs were slightly higher, 1.5 +/- 0.1 x 10(-11) m(2) s(-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ingress of water and Kokubo simulated body fluid (SBF) into poly (2-hydroxyethyl methacrylate) (PHEMA), and its co-polymers with tetrahydrofurduryl methacrylate (THFMA), loaded with either one of two model drugs, vitamin 1312 or aspirin, was studied by mass uptake over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 wt% or 10 wt% of the drugs. From DSC studies it was observed that vitamin B-12 behaved as a physical cross-linker restricting chain segmental mobility, and so had a small anti-plasticisation effect on PHEMA and the co-polymers rich in HEMA, but almost no effect on the T-g of co-polymers rich in THFMA. On the other hand, aspirin exhibited a plasticising effect on PHEMA and the copolymers. All of the polymers were found to absorb water and SBF according to a Fickian diffusion mechanism. The polymers were all found to swell to a greater extent in SBF than in water, which was attributed to the presence of Tris buffer in the SBF. The sorptions of the two penetrants were found to follow Fickian kinetics in all cases and the diffusion coefficients at 310 K for SBF were found to be smaller than those for water, except for the polymers containing aspirin where the diffusion coefficients were higher than for the other systems. For example, for sorption into PHEMA the diffusion coefficient for water was 1.41 X 10(-11) m(2)/s and for SBF was 0.79 x 10-11 m(2)/s, but in the presence of 5 wt% aspirin the corresponding values were 1.27 x 10(-1)1 m(2)/s and 1.25 x 10(-11) m(2)/s, respectively. The corresponding values for PHEMA loaded with 5 wt% B-12 were 1.25 x 10(-11) m(2)/s and 0.74 x 10(-11) m(2)/s, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.