953 resultados para Pollution propensity
Resumo:
Foram comparados a biomassa, a composição química e o valor nutritivo da macrófita aquática emersa S. alterniflora em um rio impactado por descargas de efluentes domésticos (Rio Guaú) e em um rio bem conservado (Rio Itanhaém). Amostras de S. alterniflora, água e sedimento foram coletadas nos dois rios, em novembro de 2001. O rio Guaú apresentou as maiores concentrações de N-Total e P-Total na água (415 e 674 µg.L-1, respectivamente) e sedimento (0,25 e 0,20% de Massa Seca, respectivamente), em relação a água (NT = 105 µg.L-1; PT= 20 µg.L-1) e sedimento (NT = 0,12% MS; PT = 0,05% MS) do rio Itanhaém. A biomassa aérea (316 g MS.m-2) e subterrânea (425 g MS.m-2) de S. alterniflora no rio Guaú foram significativamente maiores do que no rio Itanhaém (146 e 115 g MS.m-2). Além disto, os valores de NT, proteínas, PT, lipídios e carboidratos solúveis foram significativamente maiores na biomassa de S. alterniflora no rio Guaú. Por outro lado, a fração de parede celular e os teores de polifenóis foram maiores na biomassa de S. alterniflora no rio Itanhaém. Concluiu-se que o lançamento de efluentes domésticos em corpos d'água pode aumentar a biomassa e alterar a composição química de S. alterniflora. A maior disponibilidade de N e P no rio Guaú, provavelmente, é a causa dos maiores valores de biomassa, NT, PT, lipídeos e carboidratos solúveis em S. alterniflora neste rio.
Resumo:
2009
Resumo:
As the agricultural non-point source pollution(ANPSP) has become the most significant threat for water environmental deterioration and lake eutrophication in China, more and more scientists and technologists are focusing on the control countermeasure and pollution mechanism of agricultural non-point source pollution. The unreasonable rural production structure and limited scientific management measures are the main reasons for acute ANSPS problems in China. At present, the problem for pollution control is a lack of specific regulations, which affects the government's management efficiency. According to these characteristics and problems, this paper puts forward some corresponding policies. The status of the agricultural non-point source pollution of China is analyzed, and ANSPS prevention and control model is provided based on governance policy, environmental legislation, technical system and subsidy policy. At last, the case analysis of Qiandao Lake is given, and an economic policy is adopted based on its situation.
Resumo:
Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic.
Resumo:
This thesis collects several ecotoxicological studies focused on the quali- quantitative analysis of several classes of chemical compounds. Our studies have been conducted on different aquatic species occupying different food chain trophic levels and characterized by differences in biology, ethology, and nutrition, but all considered excellent bioindicators. This choice allowed us to have a broad overview of the contamination of aquatic environments. Detrimental effects of several chemical compounds on the species investigated have been discussed, considering the economic and public health implications linked to the pollution of the environment and the exposure to old and emerging xenobiotics. Our studies underline the importance of a multidisciplinary and integrated approach that includes the application of the one health concept to ensure the protection of public health and respect for natural environments. Studies collected in this thesis also aim to overcome some critical limitations of the branch of ecotoxicology, such as the lack of standardization in laboratory methods. Our data also underline the importance of expanding research to a greater number of various biological matrices than those indicated by the literature as target tissues for specific pollutants. This condition enables more detailed information on the kinetics of xenobiotics in animal organisms. Our studies also allow us to expand the knowledge related to the mechanisms of synergy and antagonism of mixtures of pollutants that can simultaneously accumulate in wildlife.
Resumo:
Trace Elements (TEs) pollution is a significant environmental concern due to its toxic effects on human and ecosystem health and its potential to bioaccumulate in the food chain and to threaten species survival, leading to a decline in biodiversity. Urban areas, industrial and mining activities, agricultural practices, all contribute to the release of TEs into the environment posing a significant risk to human health and ecosystems. Several techniques have been developed to control TEs into the environment. This work presents the findings of three-year PhD program that focused on research on TEs pollution. The study discusses three fundamental aspects related to this topic from the perspective of sustainable development, environmental and human health. (1) High levels of TEs contamination prevent the use of sewage sludge (SS) as a fertilizer in agriculture, despite its potential as a soil amendment. Developing effective techniques to manage TEs contamination in SS is critical to ensure its safe use in agriculture and promote resource efficiency through sludge reuse. Another purpose of the study was to evaluate different strategies to limit the TEs uptake by horticultural crops (specifically, Cucumis Melo L.). This study addressed the effect of seasonality, Trichoderma inoculation and clinoptilolite application on chromium (Cr), copper (Cu) and lead (Pb) content of early- and late-ripening cultivars of Cucumis Melo L.. Finally, the accumulation of copper and the effect of its bioavailable fraction on bacterial and fungal communities in the rhizosphere soil of two vineyards, featuring two different varieties of Vitis vinifera grown for varying lengths of time, were evaluated.
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Resumo:
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.
Resumo:
A capillary zone electrophoresis (CE) method was developed for the determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in water used in cooling systems. The biocide is indirectly determined by CE measurement of the concentration of bromide ions produced by the reaction between the DBNPA and bisulfite. The relationship between the bromide peak areas and the DBNPA concentrations showed a good linearity and a coefficient of determination (R(2)) of 0.9997 in the evaluated concentration range of 0-75 μmol L(-1). The detection and quantification limits for DBNPA were 0.23 and 0.75 μmol L(-1), respectively. The proposed CE method was successfully applied for the analysis of samples of tap water and cooling water spiked with DBNPA. The intra-day and inter-day (intermediary) precisions were lower than 2.8 and 6.2%, respectively. The DBNPA concentrations measured by the CE method were compared to the values obtained by a spectrophotometric method and were found to agree well.
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
The input of agrochemicals in the aquatic compartment can results in biochemical injuries for living organisms. In this context, the knowledge of alterations of enzymatic activities due the presence of agriculture pollutants contributes for the elucidation of the mechanisms of toxicity, implementation of economic methods for monitoring purposes and establishment of maximum allowed concentrations. In the present work, the above considerations are discussed, and data concerning changes in enzymatic function by pesticides and fertilizer contaminants are reviewed. Also, we focused on the acid phosphatase due its susceptibility to several pollutants and diversity in cellular functions.
Resumo:
This article deals with the scavenging processes modeling of the particulate sulfate and the gas sulfur dioxide, emphasizing the synoptic conditions at different sampling sites in order to verify the domination of the in-cloud or below-cloud scavenging processes in the Metropolitan Area of São Paulo (RMSP). Three sampling sites were chosen: GV (Granja Viana) at RMSP surroundings, IAG-USP and Mackenzie (RMSP center). Basing on synoptic conditions, it was chosen a group of events where the numerical modeling, a simple scavenging model, was used. These synoptic conditions were usually convective cloud storms, which are usual at RMSP. The results show that the in-cloud processes were dominant (80%) for sulfate/sulfur dioxide scavenging processes, with below-cloud process indicating around 20% of the total. Clearly convective events, with total rainfall higher than 20 mm, are better modeled than the stratiform events, with correlation coefficient of 0.92. There is also a clear association with events presenting higher rainfall amount and the ratio between modeled and observed data set with correlation coefficient of 0.63. Additionally, the suburb sampling site, GV, as expected due to the pollution source distance, presents in general smaller amount of rainwater sulfate (modeled and observed) than the center sampling site, Mackenzie, where the characterization event explains partially the rainfall concentration differences.
Resumo:
Rainfall samples collected in the downtown area of São Paulo city, during 2003, exhibited average concentrations of cadmium, lead and copper of 1.33, 8.52 and 49.5 nmol L-1, respectively. Among the major ions, NH4+ was the predominant species followed by NO3-, SO4(2-) and Ca2+, with volume weighed mean (VWM) concentrations of 37.1, 20.1, 11.9 and 10.8 µmol L-1, respectively. All the determined species showed high inter-events variability, including free H+ ions whose VWM concentration was 4.03 µmol L-1, corresponding to a pH value of 5.39.