982 resultados para Pollutant emissions matrix
Resumo:
Anthropogenic climate and land-use change are leading to irreversible losses of global biodiversity, upon which ecosystem functioning depends. Since total species' well-being depends on ecosystem goods and services, man must determine how much net primary productivity (NPP) may be appropriated and carbon emitted so as to not adversely impact this and future generations. In 2005, man ought to have only appropriated 9.72 Pg C of NPP, representing a factor 2.50, or 59.93%, reduction in human-appropriated NPP in that year. Concurrently, the carbon cycle would have been balanced with a factor 1.26, or 20.84%, reduction from 7.60 Gt C/year to 5.70 Gt C/year, representing a return to the 1986 levels. This limit is in keeping with the category III stabilization scenario of the Intergovernmental Panel for Climate Change. Projecting population growth to 2030 and its associated basic food requirements, the maximum HANPP remains at 9.74 ± 0.02 Pg C/year. This time-invariant HANPP may only provide for the current global population of 6.51 billion equitably at the current average consumption of 1.49 t C per capita, calling into question the sustainability of developing countries striving for high-consuming country levels of 5.85 t C per capita and its impacts on equitable resource distribution. © Springer Science+Business Media B.V. 2009.
Resumo:
Carbon emissions from industry are dominated by production of goods in steel, cement plastic, paper, and aluminum. Demand for these materials is anticipated to double at least by 2050, by which time global carbon emissions must be reduced by at least 50%. To evaluate the challenge of meeting this target the global flows of these materials and their associated emissions are projected to 2050 under five technical scenarios. A reference scenario includes all existing and emerging efficiency measures but cannot provide sufficient reduction. The application of carbon sequestration to primary production proves to be sufficient only for cement The emissions target can always be met by reducing demand, for instance through product life extension, material substitution, or "light-weighting". Reusing components shows significant potential particularly within construction. Radical process innovation may also be possible. The results show that the first two strategies, based on increasing primary production, cannot achieve the required emissions reductions, so should be balanced by the vigorous pursuit of material efficiency to allow provision of increased material services with reduced primary production.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.