976 resultados para Platelet rich plasma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontransferred DC laminar plasma jets of stable flow and low impinging pressure acting on the substrate were used to heat W–Mo–Cu cast iron for phase transfer hardening of the surface layer. Substrates were heated in multipass with or without overlapping or heated with only single-pass. Surface morphologies of the molten trace and microstructure of the cross-section were observed, and the hardness distribution of the treated surface layer was examined. The surface layer of single-pass-heated specimen has an average hardness of about 900 HV0.1, while the specimen treated with multipass shows an average hardness of about 700 HV0.1, because of the heat effect from the neighboring pass treating, compared with the substrate hardness of about 300 HV0.1. The results demonstrate the stable and favorably controlled heating of the laminar plasma jet on the substrate surface and feasibility of using it as a tool for surface hardening of cast iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were grown at temperatures as low as 120degreesC by plasma-enhanced chemical vapor deposition. A systematic study of the temperature dependence of the growth rate and the structure of the as-grown nanotubes is presented using a C2H2/NH3 system and nickel as the catalyst. The activation energy for the growth rate was found to be 0.23 eV, much less than for thermal chemical vapor deposition (1.2-1.5 eV). This suggests growth occurs by surface diffusion of carbon on nickel. The result could allow direct growth of nanotubes onto low-temperature substrates like plastics, and facilitate the integration in sensitive nanoelectronic devices. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文研究了滑动弧放电过程中电参数的变化,并对滑动弧等离子体中的非平衡度和各参数之间关系进行了讨论。应用了双通道电弧模型 ,对电弧在气流作用下的运动规律进行了数值模拟。模拟的结果有助于分析滑动弧非平衡等离子体的产生机理。 The elelctric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharge.Using two-channel model, the rules of arc moving due to effect of the airflow is simulated.The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.