975 resultados para Plasma electrolytic oxidation
Resumo:
Silent and stable long laminar plasma jets can be generated in a rather wide range of working parameters. The laminar flow state can be maintained even if considerable parameter fluctuations exist in the laminar plasma jet or if there is an impact of laterally injected particulate matter and its carrier gas. The attractive special features of laminar plasma jets include extremely low noise level, less entrainment of ambient air, much longer and adjustable high-temperature region length, and smaller axial gradient of plasma parameters. Modeling results show that the laminar plasma jet length increases with increasing jet inlet velocity or temperature and the effect of natural convection on laminar plasma jet characteristics can be ignored, consistent with experimental observations. The large difference between laminar and turbulent plasma jet characteristics is revealed to be due to their different laws of surrounding gas entrainment. Besides the promising applications of the laminar plasma jet to remelting and cladding strengthening of the metallic surface and to thermal barrier coating preparation, it is expected that the laminar plasma jet can become a rather ideal object for the basic studies of thermal plasma science owing to the nonexistence of the complexity caused by turbulence.
Resumo:
The ability to grow carbon nanotubes/nanofibres (CNs) with a high degree of uniformity is desirable in many applications. In this paper, the structural uniformity of CNs produced by plasma enhanced chemical vapour deposition is evaluated for field emission applications. When single isolated CNs were deposited using this technology, the structures exhibited remarkable uniformity in terms of diameter and height (standard deviations were 4.1 and 6.3% respectively of the average diameter and height). The lithographic conditions to achieve a high yield of single CNs are also discussed. Using the height and diameter uniformity statistics, we show that it is indeed possible to accurately predict the average field enhancement factor and the distribution of enhancement factors of the structures, which was confirmed by electrical emission measurements on individual CNs in an array.
Resumo:
Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.
Resumo:
Plasma enhanced chemical vapour deposition (PECVD) is a controlled technique for the production of vertically aligned multiwall carbon nanotubes for field emission applications. In this paper, we investigate the electrical properties of individual carbon nanotubes which is important for designing field emission devices. PECVD nanotubes exhibit a room temperature resistance of 1-10 kΩ/μm length (resistivity 10-6 to 10-5 Ω m) and have a maximum current carrying capability of 0.2-2 mA (current density 107-108 A/cm2). The field emission characteristics show that the field enhancement of the structures is strongly related to the geometry (height/radius) of the structures and maximum emission currents of ∼ 10 μA were obtained. The failure of nanotubes under field emission is also discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating CO2 from flue gases. Instead of air, it uses an oxygen-carrier, usually in the form of a metal oxide, to provide oxygen for combustion. When used for the combustion of gaseous fuels, such as natural gas, or synthesis gas from the gasification of coal, the technique gives a stream of CO2 which, on an industrial scale, would be sufficiently pure for geological sequestration. An important issue is the form of the metal oxide, since it must retain its reactivity through many cycles of complete reduction and oxidation. Here, we report on the rates of oxidation of one constituent of synthesis gas, H2, by co-precipitated mixtures of CuO+Al2O3 using a laboratory-scale fluidised bed. To minimise the influence of external mass transfer, and also of errors in the measurement of [H2], particles sized to 355-500μm were used at low [H2], with the temperature ranging from 450 to 900°C. Under such conditions, the reaction was slow enough for meaningful measurements of the intrinsic kinetics to be made. The reaction was found to be first order with respect to H2. Above ∼800°C, the reaction of CuO was fast and conformed to the shrinking core mechanism, proceeding via the intermediate, Cu2O, in: 2CuO+H2→Cu2O+H2O, ΔH1073 K0=- 116.8 kJ/mol; Cu2O+H2→2Cu+H2O, ΔH1073 K0-80.9 kJ/mol. After oxidation of the products Cu and Cu2O back to CuO, the kinetics in subsequent cycles of chemical looping oxidation of H2 could be approximated by those in the first. Interestingly, the carrier was found to react at temperatures as low as 300°C. The influence of the number of cycles of reduction and oxidation is explored. Comparisons are drawn with previous work using reduction by CO. Finally, these results indicate that the kinetics of reaction of the oxygen carrier with gasifier synthesis gases is very much faster than rates of gasification of the original fuel. © 2010 The Institution of Chemical Engineers.
Resumo:
Approximate Box Relaxation method was used t'o simulate a plasma jet flow impinging on a flatplate at atmospheric pressure, to achieve a better understanding of the characteristics of plasma jet in materials surface treating. The flow fields under different conditions were simulated and analyzed. The distributions of temperature, velocity and pressure were obtained by modelling. Computed results indicate that this numerical method is suitable for simulation of the flow characteristics of plasma jet: and is helpful for understanding of the mechanism of the plasma-material processing.
Resumo:
Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.
Resumo:
Arc root motions in generating dc argon-hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.
Resumo:
Arc root motion on the anode surface of a dc non-transferred plasma torch was observed. Adding hydrogen changes the arc root attachment from a diffused type to a constricted type, and the arc root of Ar-H-2 plasma suddenly,jumps from one spot to another irregularly. Images of the arc root motions taken by a high-speed video camera are presented.
Resumo:
Laminar do plasma jets are attractive for precisely controlled plasma-material processing. The design of a novel non-transferred plasma torch enabled the switching between turbulent and laminar plasma flows by simply changing the plasma generation parameters. Images of the plasma flows generated at different conditions are presented.
Resumo:
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.
Resumo:
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon- nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.
Resumo:
There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.