990 resultados para Plant-derived Smoke
Resumo:
The biocontrol strain CHA0 of Pseudomonas fluorescens produces small amounts of indole-3-acetic acid via the tryptophan side chain oxidase and the tryptophan transaminase pathways. A recombinant plasmid (pME3468) expressing the tryptophan monooxygenase pathway was introduced into strain CHA0; this resulted in elevated synthesis of indole-3-acetic acid in vitro, especially after addition of -tryptophan. In natural soil, strain CHA0/pME3468 increased fresh root weight of cucumber by 17-36%, compared to the effect of strain CHA0; root colonization was about 106 cells per g of root. However, both strains gave similar protection of cucumber against Pythium ultimum. In autoclaved soil, at 6×107 cells per g of root, strain CHA0 stimulated growth of roots and shoots, whereas strain CHA0/pME3468 caused root stunting and strong reduction of plant weight. These results are in agreement with the known effects of exogenous indole-3-acetic acid on plant roots and suggest that in the system examined, indole-3-acetic acid does not contribute to the biocontrol properties of strain CHA0.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Recent progress in understanding plant defence has highlighted a complex, interacting network of signalling pathways leading to the induction of numerous genes. The advent of new technologies for the global analysis of gene expression is fundamentally affecting research in biology, and studies on plant defence should benefit from these new approaches. Genome-wide microarrays will provide a powerful tool for the discovery of all defence-related genes and should help in elucidating their function. The association of a particular signalling pathway with a defence response can be tested with microarrays and defined mutants. Comparison of transcript profiles after biotic and abiotic stresses reveals overlapping activation of defence-related genes and defines new concepts on how plants cope with multiple aggressions. The combination of expression data with other biochemical or metabolite measurements seems another promising approach. Finally, small-scale, dedicated microarrays containing sets of well-characterised genes might prove to be a very useful complement to more expensive, less accessible, large-scale arrays.
Resumo:
The evolution of senescence (the physiological decline of organisms with age) poses an apparent paradox because it represents a failure of natural selection to increase the survival and reproductive performance of organisms. The paradox can be resolved if natural selection becomes less effective with age, because the death of postreproductive individuals should have diminished effects on Darwinian fitness [1, 2]. A substantial body of empirical work is consistent with this prediction for animals, which transmit their genes to progeny via an immortal germline. However, such evidence is still lacking in plants, which lack a germline and whose reproduction is diffuse and modular across the soma. Here, we provide experimental evidence for a genetic basis of senescence in the short-lived perennial plant Silene latifolia. Our pedigree-based analysis revealed a marked increase with age in the additive genetic variance of traits closely associated with fitness. This result thus extends to plants the quantitative genetic support for the evolutionary theory of senescence.
Resumo:
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Resumo:
Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.
Resumo:
Background: Over the last two decades, mortality from coronary heart disease (CHD) and cerebrovascular disease (CVD) declined by about 30% in the European Union (EU). Design: We analyzed trends in CHD (X ICD codes: I20-I25) and CVD (X ICD codes: I60-I69) mortality in young adults (age 35-44 years) in the EU as a whole and in 12 selected European countries, over the period 1980-2007. Methods: Data were derived from the World Health Organization mortality database. With joinpoint regression analysis, we identified significant changes in trends and estimated average annual percent changes (AAPC). Results: CHD mortality rates at ages 35-44 years have decreased in both sexes since the 1980s for most countries, except for Russia (130/100,000 men and 24/100,000 women, in 2005-7). The lowest rates (around 9/100,000 men, 2/100,000 women) were in France, Italy and Sweden. In men, the steepest declines in mortality were in the Czech Republic (AAPC = -6.1%), the Netherlands (-5.2%), Poland (-4.5%), and England and Wales (-4.5%). Patterns were similar in women, though with appreciably lower rates. The AAPC in the EU was -3.3% for men (rate = 16.6/100,000 in 2005-7) and -2.1% for women (rate = 3.5/100,000). For CVD, Russian rates in 2005-7 were 40/100,000 men and 16/100,000 women, 5 to 10-fold higher than in most western European countries. The steepest declines were in the Czech Republic and Italy for men, in Sweden and the Czech Republic for women. The AAPC in the EU was -2.5% in both sexes, with steeper declines after the mid-late 1990s (rates = 6.4/100,000 men and 4.3/100,000 women in 2005-7). Conclusions: CHD and CVD mortality steadily declined in Europe, except in Russia, whose rates were 10 to 15-fold higher than those of France, Italy or Sweden. Hungary and Poland, and also Scotland, where CHD trends were less favourable than in other western European countries, also emerge as priorities for preventive interventions.
Resumo:
Myocardial angiogenesis induction with vascular growth factors constitutes a potential strategy for patients whose coronary artery disease is refractory to conventional treatment. The importance of angiogenesis in bone formation has led to the development of growth factors derived from bovine bone protein. Twelve pigs (mean weight, 73 +/- 3 kg) were chosen for the study. In the first group (n = 6, growth factor group) five 100 micrograms boluses of growth factors derived from bovine bone protein, diluted in Povidone 5%, were injected in the lateral wall of the left ventricle. In the second group (n = 6, control group), the same operation was performed but only the diluting agent was injected. All the animals were sacrificed after 28 days and the vascular density of the left lateral wall (expressed as the number of vascular structures per mm2) as well as the area of blood vessel profiles per myocardial area analysed were determined histologically with a computerised system. The growth factor group had a capillary density which was significantly higher than that of the control group: 12.6 +/- 0.9/mm2 vs 4.8 +/- 0.5/mm2 (p < 0.01). The same holds true for the arteriolar density: 1 +/- 0.2/mm2 vs 0.3 +/- 0.1/mm2 (p < 0.01). The surface ratios of blood vessel profiles per myocardial area were 4900 +/- 800 micron 2/mm2 and 1550 +/- 400 micron 2/mm2 (p < 0.01) respectively. In this experimental model, bovine bone protein derived growth factors induce a significant neovascularisation in healthy myocardium, and appear therefore as promising candidates for therapeutic angiogenesis.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy.
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
Insect cell cultures are an important biotechnological tool for basic and applied studies. The objective of this work was to establish and characterise a new cell line from Culex quinquefasciatus embryonic tissues. Embryonated eggs were taken as a source of tissue to make explants that were seeded in L-15, Grace's, Grace's/L-15, MM/VP12, Schneider's and DMEM culture media with a pH range from 6.7-6.9 and incubated at 28ºC. The morphological, cytogenetic, biochemical and molecular characteristics of the cell cultures were examined by observing the cell shapes, obtaining the karyotypes, using a cellulose-acetate electrophoretic system and performing random amplified polymorphic DNA-polymerase chain reaction analysis, respectively. The Grace's/L-15 medium provided the optimal nutritional conditions for cell adhesion and proliferation. Approximately 40-60 days following the explant procedure, a confluent monolayer was formed. Cellular morphology in the primary cultures and the subcultures was heterogeneous, but in the monolayer the epithelioid morphology type predominated. A karyotype with a diploid number of six chromosomes (2n = 6) was observed. Isoenzymatic and molecular patterns of the mosquito cell cultures matched those obtained from the immature and adult forms of the same species. Eighteen subcultures were generated. These cell cultures potentially constitute a useful tool for use in biomedical applications.
Resumo:
The primary function of secondary plant metabolites is thought to be defence against herbivores. The frequent occurrence of these same noxious compounds in floral nectar, which functions primarily to attract pollinators, has been seen as paradoxical. Although these compounds may have an adaptive purpose in nectar, they may also occur as a nonadaptive consequence of chemical defence in other plant parts. If nectar chemistry reflects physiological constraints or passive leakage from other tissues, we expect that the identity and relative concentration of nectar cardenolides to be correlated with those of other plant parts; in contrast, discordant distributions of compounds in nectar and other tissues may suggest adaptive roles in nectar. We compared the concentrations and identities of cardenolides in the nectar, leaves and flowers of 12 species from a monophyletic clade of Asclepias. To measure putative toxicity of nectar cardenolides, we then examined the effects of a standard cardenolide (digoxin) on the behaviour of bumblebees, a common generalist pollinator of Asclepias. We found that the average cardenolide concentrations in nectar, leaves and flowers of the 12 Asclepias species were positively correlated as predicted by nonadaptive hypotheses. However, significant differences in the identities and concentrations of individual cardenolides between nectar and leaves suggest that the production or allocation of cardenolides may be independently regulated at each plant part. In addition, cardenolide concentrations in leaves and nectar exhibited no phylogenetic signal. Surprisingly, bumblebees did not demonstrate an aversion to digoxin-rich nectar, which may indicate that nectar cardenolides have little effect on pollination. Although the idea that discordant patterns of secondary metabolites across tissue types may signal adaptive functions is attractive, there is evidence to suggest constraint contributes to nectar secondary chemistry. Further work testing the ecological impacts of such patterns will be critical in determining the functional significance of nectar cardenolides
Resumo:
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Resumo:
Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms.