972 resultados para Physiological condition
Resumo:
Collection : Bibliothèque biologique et sociologique de la femme ; 6
Resumo:
The frequency and type of agonistic displays involved in male-male encounters should be significantly influenced by the presence of females. Discrete agonistic displays vary in energy expenditure and risk, and therefore should be dependent on available resources. The influence of live females and the scent of females, on the frequency of male agonistic displays was observed in a laboratory terrarium using the field cricket Gryllus bimaculatus. The effect of energy constraints on display frequency was also determined. Half the males were fed a diet high in protein and fet; the other males were fed a lower quality diet, for a 7-11 day period. The frequency of five individual displays and mating frequency were recorded using an Event Recorder and notebook. Each group of males was presented with three experimental conditions, over three days, involving the presence or absence of live females and female scent. The presence of females elicited an increase in all displays except antennation; female scent increased the frequency of antennations, mandible flares and grapples, but to a lesser extent than did live females. The frequency of grapples significantly increased for males fed the high quality diet; however diet did not influence the other displays. The combined influence of diet and condition was significant for mandible flare only. Mating frequency was not influenced by diet. However, the frequency ofthe displays were positively correlated with mating frequency for high quality fed males. Escalated displays involving high costs, such as grapple and mandible flare, increased in frequency when the benefits of winning contests were high in G.bimaculatus. Escalation to grapple behaviour was less evident for males fed the lower quality diet as this imposed energy constraints on high cost displays.
Resumo:
Traumatic brain injury (TBI) often affects social adaptive functioning and these changes in social adaptability are usually associated with general damage to the frontal cortex. Recent evidence suggests that certain neurons within the orbitofrontal cortex appear to be specialized for the processing of faces and facial expressions. The orbitofrontal cortex also appears to be involved in self-initiated somatic activation to emotionally-charged stimuli. According to Somatic Marker Theory (Damasio, 1994), the reduced physiological activation fails to provide an individual with appropriate somatic cues to personally-relevant stimuli and this, in turn, may result in maladaptive behaviour. Given the susceptibility of the orbitofrontal cortex in TBI, it was hypothesized that impaired perception and reactivity to socially-relevant information might be responsible for some of the social difficulties encountered after TBL Fifteen persons who sustained a moderate to severe brain injury were compared to age and education matched Control participants. In the first study, both groups were presented with photographs of models displaying the major emotions and either asked to identify the emotions or simply view the faces passively. In a second study, participants were asked to select cards from decks that varied in terms of how much money could be won or lost. Those decks with higher losses were considered to be high-risk decks. Electrodermal activity was measured concurrently in both situations. Relative to Controls, TBI participants were found to have difficulty identifying expressions of surprise, sadness, anger, and fear. TBI persons were also found to be under-reactive, as measured by electrodermal activity, while passively viewing slides of negative expressions. No group difference,in reactivity to high-risk card decks was observed. The ability to identify emotions in the face and electrodermal reactivity to faces and to high-risk decks in the card game were examined in relationship to social monitoring and empathy as described by family members or friends on the Brock Adaptive Functioning Questionnaire (BAFQ). Difficulties identifying negative expressions (i.e., sadness, anger, fear, and disgust) predicted problems in monitoring social situations. As well, a modest relationship was observed between hypo-arousal to negative faces and problems with social monitoring. Finally, hypo-arousal in the anticipation of risk during the card game related to problems in empathy. In summary, these data are consistent with the view that alterations in the ability to perceive emotional expressions in the face and the disruption in arousal to personally-relevant information may be accounting for some of the difficulties in social adaptation often observed in persons who have sustained a TBI. Furthermore, these data provide modest support for Damasio's Somatic Marker Theory in that physiological reactivity to socially-relevant information has some value in predicting social function. Therefore, the assessment of TBI persons, particularly those with adaptive behavioural problems, should be expanded to determine whether alterations in perception and reactivity to socially-relevant stimuli have occurred. When this is the case, rehabilitative strategies aimed more specifically at these difficulties should be considered.
Resumo:
Daytime napping improves well-being and performance for young adults. The benefits of napping in older adults should be investigated because they have fragmented nocturnal sleep, cognitive declines, and more opportunity to nap. In addition, experience with napping might influence the benefits of napping. Study 1 examined the role of experience with napping in young adults. Habitual (n = 23) and non-habitual nappers (n = 16) were randomly assigned to a 20-minute nap or a 20- minute reading condition. Both groups slept the same according to macro architecture. However, microarchitecture showed greater theta, alpha, and beta power during Stage 1, and greater delta, alpha, and sigma power during Stage 2 for habitual nappers, for the most part indicating better sleep. Both groups felt less sleepy after the nap. P2 latency, reflecting information processing, decreased after the nap for habitual nappers, and after the control condition for non-habitual nappers. In sum, both groups who slept felt better, but only the habitual nappers who napped gained a benefit in terms of information processing. Based on this outcome, experience with napping was investigated in Study 2. Study 2 examined the extent to which daytime napping enhanced cognition in older adults, especially frontal lobe function. Cognitive deficits in older adults may be due to sleep loss and age-related decline in brain functioning. Longer naps were expected to provide greater improvement, particularly for older adults, by reducing sleep pressure. Thirty-two adults, aged 24-70 years, participated in a repeated measures dose-response manipulation of sleep pressure. Twenty- and sixty-minute naps were compared to a no-nap condition in three age groups. Mood, subjective sleepiness, reaction time, working memory, 11 novelty detection, and waking electro physiological measures were taken before and after each condition. EEG was also recorded during each nap or rest condition. Napping reduced subjective sleepiness, improved working memory (serial addition / subtraction task), and improved attention (reduced P2 amplitude). Physiological sleepiness (i.e., waking theta power) increased following the control condition, and decreased after the longer nap. Increased beta power after the short nap, and seen with older adults overall, may have reflected increased mental effort. Older adults had longer latencies and smaller amplitudes for several event-related potential components, and higher beta and gamma power. Following the longer nap, gamma power decreased for older adults, but increased for young adults. Beta and gamma power may represent enhanced alertness or mental effort. In addition, Nl amplitude showed that benefits depend on the preceding nap length as well as age. Since the middle group had smaller Nl amplitudes following the short nap and rest condition, it is possible that they needed a longer nap to maintain alertness. Older adults did not show improvements to Nl amplitude following any condition; they may have needed a nap longer than 60 minutes to gain benefits to attention or early information processing. Sleep characteristics were not related to benefits of napping. Experience with napping was also investigated. Subjective data confirmed habitual nappers were happier to nap, while non-habitual nappers were happier to stay awake, reflecting self-identified napping habits. Non-habitual nappers were sleepier after a nap, and had faster brain activity (i.e., heightened vigilance) at sleep onset. These reasons may explain why non-habitual nappers choose not to nap.