872 resultados para Physical chemistry|Engineering|Materials science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new series of substituted perovskites of the type LaCr1−xMxO3−δ, where M=Cu or Mg have been synthesised by the citrate gel process and characterized by means of powder X-ray diffraction, infrared spectroscopy, selected area diffraction and also by electron paramagnetic resonance spectroscopy. The general powder morphology was also observed using scanning electron microscopy. 40 mole percent substitution of Cr3+ by Cu2+ or Mg2+ have shown to result in single phase perovskite structure. Beyond x=0.5, a new phase has been identified in a narrow compositional range. Effect of Cu and Mg substitution on the sinterability of pure LaCrO3 has also been studied. It is possible to get near theoretically dense materials at a temperature as low as 1200°C in air by copper substitution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium-containing aluminium alloys are of considerable current interest in the aerospace and aircraft industries because lithium additions to aluminium improve the modulus and decrease the density compared to conventional aluminium alloys. Few commercial aluminium-lithium alloys have emerged for use in the aerospace industry. One such candidate is 8090, a precipitation-hardenable Al-Li-Cu-Mg alloy. The influence of electron-beam welding on the microstructure and mechanical properties of alloy 8090 material has been evaluated through microscopical observations and mechanical tests. Microscopic observations of the electronbeam welds revealed an absence of microporosity and hot cracking, but revealed presence of microporosity in the transverse section of the weld. Mechanical tests revealed the electronbeam weld to have lower strength, elongation and joint efficiency. A change in microscopic fracture mode was observed for the welded material when compared to the unwelded counterpart. An attempt is made to rationalize the behaviour in terms of competing mechanistic effects involving the grain structure of the material, the role of matrix deformation characteristics, grain-boundary chemistry and grain-boundary failure.