925 resultados para Phase rule and equilibrium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex dynamics of beam-halo formation and evolution in circular particle accelerators is crucial for the design of current and future rings, particularly those utilizing superconducting magnets such as the CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and the proposed Future Circular Hadron Collider (FCC-hh). A recent diffusive framework, which describes the evolution of the beam distribution by means of a Fokker-Planck equation, with diffusion coefficient derived from the Nekhoroshev theorem, has been proposed to describe the long-term behaviour of beam dynamics and particle losses. In this thesis, we discuss the theoretical foundations of this framework, and propose the implementation of an original measurement protocol based on collimator scans in view of measuring the Nekhoroshev-like diffusive coefficient by means of beam loss data. The available LHC collimator scan data, unfortunately collected without the proposed measurement protocol, have been successfully analysed using the proposed framework. This approach is also applied to datasets from detailed measurements of the impact on the beam losses of so-called long-range beam-beam compensators also at the LHC. Furthermore, dynamic indicators have been studied as a tool for exploring the phase-space properties of realistic accelerator lattices in single-particle tracking simulations. By first examining the classification performance of known and new indicators in detecting the chaotic character of initial conditions for a modulated Hénon map and then applying this knowledge to study the properties of realistic accelerator lattices, we tried to identify a connection between the presence of chaotic regions in the phase space and Nekhoroshev-like diffusive behaviour, providing new tools to the accelerator physics community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD research investigates sealing practices in the Near East during the Late Bronze II period (ca. 1375-1175 BCE). Sealings from archaeological contexts in the Southern Levant, North Syria, Upper and Lower Mesopotamia and South-Western Iran are taken under consideration and analyzed on multiple aspects at local, regional, and international levels. The contextual, functional, and iconographic analysis of these materials, in fact, allows to reconstruct the nature of the transactions and the agents involved in the sealing operations within local administrative systems, highlighting at the same time aspects of inter-regional interactions during the age of internationalism. Following a survey of the available evidence, a corpus consisting of 1845 records from 28 different sites across the ANE, has been filed using MS Access and MS Excel, including 740 unpublished sealing from Karkemish. Among this large evidence, the corpus of recently discovered sealings from Karkemish and the other scattered sealings from the North Syrian provinces, for instance, provide insights on the core-periphery relationships under the Hittite Empire; while the deposit from Building P at Tell Sheikh Hamad, that of the Middle Assyrian houses at Tell Fekheriye, and of the dunnu of Tell Sabi Abyad, significantly contributes to defining the administration of provinces within the Middle Assyrian state and the regional circulation of good. The less extensive evidence from South Mesopotamia under the Kassite rule and from Middle Elamite contexts in South-Western Iran somewhat contribute as well to the understanding of sealing practices in the LB II period. The South Levantine kingdoms, on the other hand, seems participates to the Egyptian regional network of exchanges and sealing practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By the year 2005 the world biochemical market will reach an estimated $ 100 billion and separation processes are a vital link between lab discoveries and the fulfillment of this commercialization potential. The practical application of aqueous two-phase systems (ATPS) to extraction processes has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. In this paper a critical overview of the fundamental thermodynamic properties related to formation of aqueous two-phase systems and their application to extraction and purification of bioparticules is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research intended to investigate the use of diazepam in conjunction with behavioral strategies to manage uncooperative behavior of child dental patients. The 6 participants received dental treatment during 9 sessions. Using a double-blind design, children received placebo or diazepam and at the same time were submitted to behavior management produces (distraction, explanation, reinforcement and set rule and limits). All sessions were recorded in video-tapes biped in 15 seconds intervals, in which observers recorded child's (crying, body and/or head movements, escape and avoidance) and dentist's behavior. The results indicated that diazepam, considering the used dose, was only effective with one subject. The other participants didn't permit the treatment and showed an increase in their resistance. The behavioral preparation strategies for dental treatment should have been more precisely planned in order to help the child to face the real dental treatment conditions mainly in the first sessions avoiding to reinforce inappropriate behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.