916 resultados para Peritoneal Cavity
Resumo:
We present the first self-mode-locked optically pumped quantum-dot semiconductor disk laser. Our mode-locked device emits sub-picosecond pulses at a wavelength of 1040 nm and features a record peak power of 460 W at a repetition rate of 1.5 GHz. In this work, we also investigate the temperature dependence of the pulse duration as well as the time-bandwidth product for stable mode locking. © 2014 Optical Society of America.
Resumo:
We report on a record-high output power from an optically pumped quantum-dot vertical-external-cavity surface-emitting laser, optimized for high-power emission at 1040 nm. A maximum continuous-wave output power of 8.41 W is obtained at a heat sink temperature of 1.5 °C. By inserting a birefringent filter inside the laser cavity, a wavelength tuning over a range of 45 nm is achieved. © 2014 IEEE.
Resumo:
We highlight two important aspects related to a mathematical modeling of pulsed fiber lasers with long and ultra-long ring cavity -impact of an initial noise and a cavity length on generation of single optical pulses. Using as an example a simple scalar model of a ring fiber laser that describes the radiation build-up from noise and the following intra-cavity pulse dynamics during a round trip we study dependence of generated pulse characteristics on the resonator length in the range from 30 m up to 2 km. © 2013 Optical Society of America.
Resumo:
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers. © 2014 Optical Society of America.
Resumo:
A novel all-fibre cavity ring down spectroscopy technique is demonstrated where a tilted fibre Bragg grating in the cavity provides sensitivity to surrounding refractive index. A decay time of 450ns was attained when sensing water.
Resumo:
A novel time-division-multiplexed Bragg grating interrogation system is presented, utilising a semiconductor optical amplifier within a resonating cavity. Without fast electronics, closely spaced low reflectivity gratings are interrogated with high signal power and low noise.
Resumo:
We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses. © 2014 OSA.
Resumo:
The first resonant-cavity time-division-multiplexed (TDM) fiber Bragg grating sensor interrogation system is reported. This novel design uses a pulsed semiconductor optical amplifier in a cyclic manner to function as the optical source, amplifier, and modulator. Compatible with a range of standard wavelength detection techniques, this optically gated TDM system allows interrogation of low reflectivity "commodity" sensors spaced just 2 m apart, using a single active component. Results demonstrate an exceptional optical signal-to-noise ratio of 36 dB, a peak signal power of over +7 dBm, and no measurable crosstalk between sensors. Temperature tuning shows that the system is fully stable with a highly linear response. © 2004 IEEE.
Resumo:
We review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fibre lasers. These include parabolic self-similar pulse mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fibre laser by inclusion of a spectral filter into the laser cavity.
Resumo:
Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.
Resumo:
Nonlinearity plays a critical role in the intra-cavity dynamics of high-pulse energy fiber lasers. Management of the intra-cavity nonlinear dynamics is the key to increase the output pulse energy in such laser systems. Here, we examine the impact of the order of the intra-cavity elements on the energy of generated pulses in the all-normal dispersion mode-locked ring fiber laser cavity. In mathematical terms, the nonlinear light dynamics in resonator makes operators corresponding to the action of laser elements (active and passive fiber, out-coupler, saturable absorber) non-commuting and the order of their appearance in a cavity important. For the simple design of all-normal dispersion ring fiber laser with varying cavity length, we found the order of the cavity elements, leading to maximum output pulse energy.
Resumo:
We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with single-polarization output using an intra-cavity 45°-tilted fiber grating (45°-TFG). When the laser cavity fiber subjected to loading, the laser output is encoded with the load and can be measured and monitored by a power metre. A loading sensitivity as high as 0.033/ (kg·m-1) has been achieved using this laser. The experiment results clearly show that single polarization fiber laser may be developed to a low-cost high-sensitivity loading sensor system. © 2014 SPIE.
Resumo:
A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.
Resumo:
We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with singlepolarization output using an intra-cavity 45°-tilted fiber grating. When the laser cavity fiber is subjected to loading, the laser output is encoded with the loading information that can be measured and monitored by a standard power meter. The achieved loading sensitivity is 0.033/kg • m-1 and 0.042/kg • m-1 for two different interaction lengths. The experimental results clearly show that such a single-polarization fiber laser may be commercially developed into a low-cost, high-sensitivity loading sensor system.