897 resultados para Performance Estimation
Resumo:
This study investigated the longitudinal performance of 583 students on six map items that were represented in various graphic forms. Specifically, this study compared the performance of 7-9-year-olds (across Grades 2 and 3) from metropolitan and non-metropolitan locations. The results of the study revealed significant performance differences in favour of metropolitan students on two of six map tasks. Implications include the need for teachers in non-metropolitan locations to ensure that their students do not overly fixate on landmarks represented on maps but rather consider the arrangement of all elements encompassed within the graphic.
Resumo:
Gradient-based approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in value-function methods. In this paper we introduce GPOMDP, a simulation-based algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes (POMDPs) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm's chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter β ∈ [0,1) (which has a natural interpretation in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove convergence of GPOMDP, and show how the correct choice of the parameter β is related to the mixing time of the controlled POMDP. We briefly describe extensions of GPOMDP to controlled Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by GPOMDP can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure to find local optima of the average reward. ©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
We present a technique for estimating the 6DOF pose of a PTZ camera by tracking a single moving target in the image with known 3D position. This is useful in situations where it is not practical to measure the camera pose directly. Our application domain is estimating the pose of a PTZ camerso so that it can be used for automated GPS-based tracking and filming of UAV flight trials. We present results which show the technique is able to localize a PTZ after a short vision-tracked flight, and that the estimated pose is sufficiently accurate for the PTZ to then actively track a UAV based on GPS position data.
Resumo:
Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.
Resumo:
In 2001, the Malaysian Code on Corporate Governance (MCCG) became an integral part of the Bursa Malaysia Listing Rules, which requires all listed firms to disclose the extent of compliance with the MCCG. Our panel analysis of 440 firms from 1999 to 2002 finds that corporate governance reform in Malaysia has been successful, with a significant improvement in governance practices. The relationship between ownership by the Employees Provident Fund (EPF) and corporate governance has strengthened during the period subsequent to the reform, in line with the lead role taken by the EPF in establishing the Minority Shareholders Watchdog Group. The implementation of MCCG has had a substantial effect on shareholders' wealth, increasing stock prices by an average of about 4.8%. Although there is no evidence that politically connected firms perform better, political connections do have a significantly negative effect on corporate governance, which is mitigated by institutional ownership.
Resumo:
Estimates of the half-life to convergence of prices across a panel of cities are subject to bias from three potential sources: inappropriate cross-sectional aggregation of heterogeneous coefficients, presence of lagged dependent variables in a model with individual fixed effects, and time aggregation of commodity prices. This paper finds no evidence of heterogeneity bias in annual CPI data for 17 U.S. cities from 1918 to 2006, but correcting for the “Nickell bias” and time aggregation bias produces a half-life of 7.5 years, shorter than estimates from previous studies.