971 resultados para Peptide secondary structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of water-soluble synthetic dipeptides (1-3) with an N-terminally located beta-alanine residue, beta-alanyl-L-valine (1), beta-alanyl-L-isoleucine (2), and beta-alanyl-L-phenylalanine (3, form hydrogen-bonded supramolecular double helices with a pitch length of 1 nm, whereas the C-terminally positioned beta-alanine containing dipeptide (4), L-phenylalanyl-beta-alanine, does not form a supramolecular double helical structure. beta-Ala-Xaa (Xaa = Val/Ile/Phe) can be regarded as a new motif for the formation of supramolecular double helical structures in the solid state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of poly(ethylene glycol) PEG crystallization on P-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid P peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M-n = 3300 g mol(-1). It is found, via small-angle X-ray scattering,X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-P amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle Xray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, A beta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. Oil increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A water-soluble tripeptide Val-Ile-Ala (VIA) 1, bearing sequence identity with the C-terminal portion of the Alzheimer A beta-peptide (A beta(40-42)), self-assembles, in crystalline form, to produce an intermolecularly hydrogen bonded supramolecular beta-sheet structure which self-associates to form straight, unbranched nanofibrils exhibiting amyloid-like behavior; in contrast, the synthetic tripeptide Ala-Val-Ile (AVI) 2 self-assembles to produce a beta-sheet structure that forms branched nanofibrils which do not show any characteristic features of amyloid-like fibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the effect of sample hydration on the wide-angle X-ray scattering patterns of amyloid fibrils from two different sources, hen egg white lysozyme (HEWL) and an 11-residue peptide taken from the sequence of transthyretin (TTR105-115). Both samples show an inter-strand reflection at 4.7 Å and an inter-sheet reflection which occurs at 8.8 and 10 Å for TTR105-115 and HEWL fibrils, respectively. The positions, widths, and relative intensities of these reflections are conserved in patterns obtained from dried stalks and hydrated samples over a range of fibril concentrations. In 2D scattering patterns obtained from flow-aligned hydrated samples, the inter-strand and inter-sheet reflections showed, respectively, axial and equatorial alignment relative to the fibril axis, characteristic of the cross-β structure. Our results show that the cross-β structure of the fibrils is not a product of the dehydrating conditions typically employed to produce aligned samples, but is conserved in individual fibrils in hydrated samples under dilute conditions comparable to those associated with other biophysical and spectroscopic techniques. This suggests a structure consisting of a stack of two or more sheets whose interfaces are inaccessible to bulk water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface pressure measurements, external reflection- Fourier transform infrared spectroscopy, and neutron re. flectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol3-( phosphor-rac-( 1- glycerol)) ( DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine ( DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG ( from 0.7 mu M solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin. magainin. cecropin. External re. ection- Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an airwater interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micellar nanocontainer delivery and release system is designed on the basis of a peptide-polymer conjugate. The hybrid molecules self-assemble into micelles comprising a modified amyloid peptide core surrounded by a PEG corona. The modified amyloid peptide previously studied in our group forms helical ribbons based on a beta-sheet motif and contains beta-amino acids that are excluded from the beta-sheet structure, thus being potentially useful as fibrillization inhibitors. In the model peptide-PEG hybrid system studied, enzymatic degradation using alpha-chymotrypsin leads to selective cleavage close to the PEG-peptide linkage, break up of the micelles, and release of peptides in unassociated form. The release of monomeric peptide is useful because aggregation of the released peptide into beta-sheet amyloid fibrils is not observed. This concept has considerable potential in the targeted delivery of peptides for therapeutic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of a fragment of the amyloid beta peptide that has been shown to be critical in amyloid fibrillization has been studied in aqueous solution. There are conflicting reports in the literature on the fibrillization of A beta (16-20), i.e., KLVFF, and our results shed light on this. In dilute solution, self-assembly of NH2-KLVFF-COOH is strongly influenced by aromatic interactions between phenylalanine units, as revealed by UV spectroscopy and circular dichroism. Fourier transform infrared (FTIR) spectroscopy reveals beta-sheet features in spectra taken for more concentrated solutions and also dried films. X-ray diffraction and cryo-transmission electron microscopy (cryo-TEM) provide further support for beta-sheet amyloid fibril formation. A comparison of cryo-TEM images with those from conventional dried and negatively stained TEM specimens highlights the pronounced effects of sample preparation on the morphology. A comparison of FTIR data for samples in solution and dried samples also highlights the strong effect of drying on the self-assembled structure. In more concentrated phosphate-buffered saline (PBS) solution, gelation of NH2-KLVFF-COOH is observed. This is believed to be caused by screening of the electrostatic charge on the peptide, which enables beta sheets to aggregate into a fibrillar gel network. The rheology of the hydrogel is probed, and the structure is investigated by light scattering and small-angle X-ray scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanostructure of a peptide amphiphile in commercial use in anti-wrinkle creams is investigated. The peptide contains a matrikine, collagen-stimulating, pentapeptide sequence. Selfassembly into giant nanotapes is observed and the internal structure was found to comprise bilayers parallel to the flat tape surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of a hydrophobically modified fragment of the amyloid beta(A beta) peptide has been studied in methanol. The peptide FFKLVFF is based on A beta(16-20) extended at the N terminus by two phenylalanine residues. The formation of amyloid-type fibrils is confirmed by Congo Red staining, thioflavin T fluorescence and circular dichroism experiments. FTIR points to the formation of beta-sheet structures in solution and in dried films and suggests that aggregation occurs at low concentration and is not strongly affected by further increase in concentration, i.e. the peptide is a strong fibril-former in methanol. UV fluorescence experiments on unstained peptide and CD point to the importance of aromatic interactions between phenylalanine groups in driving aggregation into beta-sheets. The CD spectrum differs from that usually observed for beta-sheet assemblies formed by larger peptides or proteins and this is discussed for solutions in methanol and also trifluoroethanol. The fibril structure is imaged by transmission electron microscopy and scanning electron microscopy on dried samples and is confirmed by small-angle X-ray scattering experiments in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of applying a fragment-based protein tertiary structure prediction method to the prediction of 14 CASP5 target domains are described. The method is based on the assembly of supersecondary structural fragments taken from highly resolved protein structures using a simulated annealing algorithm. A number of good predictions for proteins with novel folds were produced, although not always as the first model. For two fold recognition targets, FRAGFOLD produced the most accurate model in both cases, despite the fact that the predictions were not based on a template structure. Although clear progress has been made in improving FRAGFOLD since CASP4, the ranking of final models still seems to be the main problem that needs to be addressed before the next CASP experiment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the morphology of self-assembled peptide nanostructures, particularly those based on amyloid peptides, has been the focus of intense research. In order to exploit these structures in electronic applications, further understanding of their electronic behavior is required. In this work, the role of peptide morphology in determining electronic conduction along self-assembled peptide nanofilament networks is demonstrated. The peptides used in this work were based on the sequence AAKLVFF, which is an extension of a core sequence from the amyloid b peptide. We show that the incorporation of a non-natural amino acid, 2-thienylalanine, instead of phenylalanine improves the obtained conductance with respect to that obtained for a similar structure based on the native sequence, which was not the case for the incorporation of 3-thienylalanine. Furthermore, we demonstrate that the morphology of the self-assembled structures, which can be controlled by the solvent used in the assembly process, strongly affects the conductance, with larger conduction obtained for a morphology of long, straight filaments. Our results demonstrate that, similar to natural systems, the assembly and folding of peptides could be of great importance for optimizing their function as components of electronic devices. Hence, sequence design and assembly conditions can be used to control the performance of peptide based structures in such electronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel combination of site-specific isotope labelling, polarised infrared spectroscopy and molecular combing reveal local orientational ordering in the fibril-forming peptide YTIAALLSPYSGGRADS. Use of 13C-18O labelled alanine residues demonstrates that the Nterminal end of the peptide is incorporated into the cross-beta structure, while the C-terminal end shows orientational disorder

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.