948 resultados para Peptóides
Resumo:
Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.
Resumo:
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Resumo:
BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.
Resumo:
Purpose: Retinal stem cells (RSCs) can be isolated from radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have great capacity to renew and generate neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, our published results showed poor integration and survival rate after cell grafting into the retina. The uncontrollable environment of retina seems to be the problem. To bypass this, we are trying to generate hemi-retinal tissue in vitro that can be used for transplantation. Methods: Expanded RSCs were seeded in a mixture of poly-ethylene-glycol (PEG)-polymer-based hydrogels crosslinked by peptides that also serve as substrates for matrix metalloproteinases. Different doses of crosslinker peptides were tested. Several growth factors were studied to stimulate cell proliferation and differentiation. Results: Cells were trapped in hydrogels and cultured in the presence of FGF2 and EGF. Spherical cell clusters indicating proliferation appeared within several days, but there was no cell migration within the gel. We then added cell adhesion molecules integrin ligand RGDSP, or laminin, or a combination of both, into the gel. Cells grown with laminin showed the best proliferation. Cells grown with RGDSP proliferated a few times and then started to spread out. Cells grown with the combination of RGDSP and laminin showed better proliferation than with RGDSP alone and larger spread-outs than with laminin alone. After stimulations with first FGF2 and EGF, and then only FGF2, some cells showed neuronal morphology after 2 weeks. The neuronal population was assessed by the presence of neuronal marker b-tubulin-III. Glial cells were also present. Further characterizations are undergoing. Conclusions: RSC can grow and migrate in 3D hydrogel with the addition of FGF2, EGF, RGDSP and laminin. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
Amino acids form the building blocks of all proteins. Naturally occurring amino acids are restricted to a few tens of sidechains, even when considering post-translational modifications and rare amino acids such as selenocysteine and pyrrolysine. However, the potential chemical diversity of amino acid sidechains is nearly infinite. Exploiting this diversity by using non-natural sidechains to expand the building blocks of proteins and peptides has recently found widespread applications in biochemistry, protein engineering and drug design. Despite these applications, there is currently no unified online bioinformatics resource for non-natural sidechains. With the SwissSidechain database (http://www.swisssidechain.ch), we offer a central and curated platform about non-natural sidechains for researchers in biochemistry, medicinal chemistry, protein engineering and molecular modeling. SwissSidechain provides biophysical, structural and molecular data for hundreds of commercially available non-natural amino acid sidechains, both in l- and d-configurations. The database can be easily browsed by sidechain names, families or physico-chemical properties. We also provide plugins to seamlessly insert non-natural sidechains into peptides and proteins using molecular visualization software, as well as topologies and parameters compatible with molecular mechanics software.
Resumo:
HCV infection has a severe course of disease in HIV/HCV co-infection and in liver transplant recipients. However, the mechanisms involved remain unclear. Here, we evaluated functional profiles of HCV-specific T-cell responses in 86 HCV mono-infected patients, 48 HIV/HCV co-infected patients and 42 liver transplant recipients. IFN-gamma and IL-2 production and ability of CD4 and CD8 T cells to proliferate were assessed after stimulation with HCV-derived peptides. We observed that HCV-specific T-cell responses were polyfunctional in HCV mono-infected patients, with presence of proliferating single IL-2-, dual IL-2/IFN-gamma and single IFN-gamma-producing CD4+ and dual IL-2/IFN-gamma and single IFN-gamma-producing CD8+ cells. In contrast, HCV-specific T-cell responses had an effector profile in HIV/HCV co-infected individuals and liver transplant recipients with absence of single IL-2-producing HCV-specific CD4+ and dual IL-2/IFN-gamma-producing CD8+ T cells. In addition, HCV-specific proliferation of CD4+ and CD8+ T cells was severely impaired in HIV/HCV co-infected patients and liver transplant recipients. Importantly, "only effector" T-cell responses were associated with significantly higher HCV viral load and more severe liver fibrosis scores. Therefore, the present results suggest that immune-based mechanisms may contribute to explain the accelerated course of HCV infection in conditions of HIV-1 co-infection and liver transplantation.
Resumo:
Taking advantage of homeostatic mechanisms to boost tumor-specific cellular immunity is raising increasing interest in the development of therapeutic strategies in the treatment of melanoma. Here, we have explored the potential of combining homeostatic proliferation, after transient immunosuppression, and antigenic stimulation of Melan-A/Mart-1 specific CD8 T-cells. In an effort to develop protocols that could be readily applicable to the clinic, we have designed a phase I clinical trial, involving lymphodepleting chemotherapy with Busulfan and Fludarabine, reinfusion of Melan-A specific CD8 T-cell containing peripheral blood mononuclear cells (exempt of growth factors), and Melan-A peptide vaccination. Six patients with advanced melanoma were enrolled in this outpatient regimen that demonstrated good feasibility combined with low toxicity. Consistent depletion of lymphocytes with persistent increased CD4/CD8 ratios was induced, although the proportion of circulating CD4 regulatory T-cells remained mostly unchanged. The study of the immune reconstitution period showed a steady recovery of whole T-cell numbers overtime. However, expansion of Melan-A specific CD8 T-cells, as measured in peripheral blood, was mostly inconsistent, accompanied with marginal phenotypic changes, despite vaccination with Melan-A/Mart-1 peptide. On the clinical level, 1 patient presented a partial but objective antitumor response following the beginning of the protocol, even though a direct effect of Busulfan/Fludarabine cannot be completely ruled out. Overall, these data provide further ground for the development of immunotherapeutic approaches to be both effective against melanoma and applicable in clinic.
Resumo:
Defensins and cathelicidins are anti-microbial peptides (AMPs) that act as natural antibiotics and are part of the innate immune defence in many species. We consider human defensins and LL37, the only human member of the cathelicidin family. In particular, we refer to the human alpha-defensins called human neutrophil peptides (HNP1 through 4), which are produced by neutrophils, HD5 and HD6, mainly expressed in Paneth cells of intestine, the human beta-defensins HBD1, HBD2 and HBD3, synthesized by epithelial cells and LL37, which is located in granulocytes, but is also produced by epithelial cells of the skin, lungs, and gut. In the last years, the study of AMPs activity and regulation has allowed to understand the important role of these peptides not only in the innate defence mechanisms against bacteria, viruses, fungi, but also in the regulation of immune cell activation and migration. Complementary studies have disclosed a role for AMPs in modulating many physiological processes that involve non-immune cells, such as activation of wound healing, angiogenesis, cartilage remodeling. Due to the pleiotropic tasks of these peptides, many of them are now being discovered to contribute to immune pathology of chronic diseases that affect skin, gut, joints; this is supported by many examples of immune-mediated pathologies in which their expression is disregulated. In this article we review the current literature that suggests a role for human defensins and LL37 in pathogenic mechanisms of several chronic diseases that are considered of auto-immune or auto-inflammatory origin.
Resumo:
Knowledge of the hormonal pathway controlling genotype-specific norms of reaction would shed light on the ecological factors to which each genotype is adapted. Environmentally mediated changes in the sign and magnitude of covariations between heritable melanin-based colouration and fitness components are frequent, revealing that extreme melanin-based phenotypes can display different physiological states depending on the environment. Yet, the hormonal mechanism underlying this phenomenon is poorly understood. One novel hypothesis proposes that these covariations stem from pleiotropic effects of the melanocortin system. Melanocortins are post-translationally modified bioactive peptides derived from the POMC prohormone that are involved in melanogenesis, anti-inflammation, energy homeostasis and stress responses. Thus, differential regulation of fitness components in relation to environmental factors by pale and dark melanic individuals may be due to colour-specific regulation of the POMC prohormone. Accordingly, we found that the degree of reddish melanic colouration was negatively correlated with blood circulating levels of the POMC prohormone in female tawny owls (Strix aluco) rearing a brood for which the size was experimentally reduced, but not when enlarged, and in females located in rich but not in poor territories. Our findings support the hypothesis that the widespread links between melanin-based colouration and fitness components may be mediated, at least in part, by the melanocortin system.
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor, the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca21 -dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte RESTwas variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the wellknown structural/ functional heterogeneity of astrocytes.
Resumo:
The ID-Chagas test is a particle gel immunoassay (PaGIA). Red coloured particles are sensitised with three different synthetic peptides representing antigen sequences of Trypanosoma cruzi: Ag2, TcD and TcE. When these particles are mixed with serum containing specific antibodies, they agglutinate. The reaction mixture is centrifuged through a gel filtration matrix allowing free agglutinated particles to remain trapped on the top or distributed within the gel. The result can be read visually. In order to investigate the ability of the ID-PaGIA to discriminate negative and positive sera, 111 negative and 119 positive, collected in four different Brazilian institutions, were tested by each of the participants. All sera were previously classified as positive or negative according to results obtained with three conventional tests (indirect immunofluorescence, indirect hemaglutination, and enzime linked immunosorbent assay). Sensitivity rates of ID-PaGIA varied from 95.7% to 97.4% with mean sensitivity of 96.8% and specificity rates varied from 93.8 to 98.8% with mean specificity of 94.6%. The overall Kappa test was 0.94. The assay presents as advantages the simplicity of operation and the reaction time of 20 min. In this study, ID-PaGIA showed to be highly sensitive and specific.
Resumo:
Control of schistosomiasis in Venezuela has been a topic of major interest and controversy among the metaxenic parasitosis. A small area of transmission of approximately 15,000 km2 was thought to be eradicated some years ago. However, some epidemiological characteristics of our transmission area have limited the success on the way toward eradication. Since 1945, when the Schistosomiasis Control Program started, the prevalence in the endemic area has decreased from 14% in 1943 to 1.4% in 1996. Until 1982, the surveillance of active cases was based on massive stool examination. Since then, the Schistosomiasis Research Group (SRG) recommended the additional use of serologic tests in the Control Program and the selective or massive chemotherapy depending on serological and parasitological prevalence of each community. At present, the real prevalence is underestimated due to the fact that approximately 80% of the individuals eliminate less than 100 eggs/g of feces. Those persons could be responsible for the maintenance of the foci going on and therefore limiting the impact of the control measures. Efforts of the SRG are being oriented toward improvement of immunodiagnostic tests by using defined antigens (enzymes) and chemically synthesized peptides, derived from relevant molecules of the parasite, either for antibodies or antigens search. On the other hand, introduction of snail competitors has been a biological weapon in the control of the intermediate host in certain areas. However, the recent reinfestation of water courses by Biomphalaria glabrata, the increased prevalence in some areas, together with important administrative changes at the Control Program of the Minister of Health, have arisen new questions and doubts, challenging the eradication strategy proposed during the last decade.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na(+)-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the alpha, beta, and gamma ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of alpha, beta, and gamma ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (beta R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.
Resumo:
Prepro-RFRP-containing neurons have recently been described in the mammalian brain. These neurons are only found in the tuberal hypothalamus. In this work, we have provided a detailed analysis of the distribution of cells expressing the RFRP mRNA, and found them in seven anatomical structures of the tuberal hypothalamus. No co-expression with melanin-concentrating hormone (MCH) or hypocretin (Hcrt), that are also described in neurons of the tuberal hypothalamus, was observed. Using the BrdU method, we found that all RFRP cell bodies are generated between E13 and E14. Thus, RFRP neurons form a specific cell population with a complex distribution pattern in the tuberal hypothalamus. However, they are generated in one peak. These observations are discussed with data concerning the distribution and genesis of the MCH and Hcrt cell populations that are also distributed in the tuberal hypothalamus.