897 resultados para Pattern
Resumo:
Users of safety-critical systems are expected to effectively control or monitor complex systems, with errors potentially leading to catastrophe. For such systems, safety is of paramount importance and must be designed into the human-machine interface. While many case studies show how inadequate design practice led to poor safety and usability, concrete guidance on good design practices is scarce. The paper argues that the pattern language paradigm, widely used in the software design community, is a suitable means of documenting appropriate design strategies. We discuss how typical usability-related properties (e.g., flexibility) need some adjustment to be used for assessing safety-critical systems, and document a pattern language, based on corresponding "safety-usability" principles
Resumo:
Child growth in PNG shows strong regional differences, with highlands children being generally shorter but stockier than those from lowland areas. Differences in diet, socioeconomic status and local subsistence agriculture were found to be important predictors of child growth. All variables indicating higher socioeconomic status were correlated with better growth, as was a high consumption of imported and local high quality foods such as cereals, legumes, tinned fish or meat and fresh fish. Differences in subsistence explained between 25% and 50% of the geographical variation in growth. Child growth was better in systems based on cassava and sweet potato, and worse in those where banana, sago and taro are staples. The cultivation of all major cash crops and sales of fish and food crops improved child growth. Birth weights show similar patterns to those observed in child growth. The implications of these findings for possible interventions are discussed.
Resumo:
Retrieving large amounts of information over wide area networks, including the Internet, is problematic due to issues arising from latency of response, lack of direct memory access to data serving resources, and fault tolerance. This paper describes a design pattern for solving the issues of handling results from queries that return large amounts of data. Typically these queries would be made by a client process across a wide area network (or Internet), with one or more middle-tiers, to a relational database residing on a remote server. The solution involves implementing a combination of data retrieval strategies, including the use of iterators for traversing data sets and providing an appropriate level of abstraction to the client, double-buffering of data subsets, multi-threaded data retrieval, and query slicing. This design has recently been implemented and incorporated into the framework of a commercial software product developed at Oracle Corporation.
Resumo:
A method and a corresponding tool is described which assist design recovery and program understanding by recognising instances of design patterns semi-automatically. The approach taken is specifically designed to overcome the existing scalability problems caused by many design and implementation variants of design pattern instances. Our approach is based on a new recognition algorithm which works incrementally rather than trying to analyse a possibly large software system in one pass without any human intervention. The new algorithm exploits domain and context knowledge given by a reverse engineer and by a special underlying data structure, namely a special form of an annotated abstract syntax graph. A comparative and quantitative evaluation of applying the approach to the Java AWT and JGL libraries is also given.
Resumo:
Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).